
Dominoes: An Interactive Exploratory Data
Analysis Tool for Software Relationships

Jose Ricardo da Silva Junior , Daniel Prett Campagna , Esteban Clua ,

Anita Sarma , and Leonardo Murta

Abstract—Project comprehension questions, such as “which modified artifacts can affect my work?” and “how can I identify the

developers who should be assigned to a given task?” are difficult to answer, require an analysis of the project and its data, are context

specific, and cannot always be pre-defined. Current research approaches are restricted to post hoc analyses over software

repositories. Very few interactive exploratory tools exist since the large amount of data that need to be analyzed prohibits its exploration

at interactive rates. Moreover, such analyses typically require the user to create complex scripts or queries to extract the desired

information from data. Here we present Dominoes, a tool for interactive data exploration aimed at end users (i.e., project managers or

developers). Dominoes allows users to interact with different types and units of data to investigate project relationships and view

intermediate results as charts, tables, and graphs. Additionally, it allows users to save the derived data as well as their exploration

paths for later use. In a scenario-based evaluation study, participants achieved a success rate of 86 percent in their explorations, with a

mean time of 7.25 minutes for answering a set of (project) exploration questions.

Index Terms—Design tools and techniques, interactive data exploration and discovery, evaluation/methodology

Ç

1 INTRODUCTION

SOFTWARE development leaves traces of activities – history
of changes and who made those changes, list of bugs and

issues related to the software, which changes fixed which
issues, which files were changed together, and so on. This
data, when analyzed, can help project managers and devel-
opers understand among others work dependencies in the
team, development patterns, artifact coupling, location of fre-
quent bugs among other relationships [1], [2], [3], [4], [5], [6].
Software teams are now increasingly analyzing historical
data to inform their engineering and business decisions [7].

For example, Alice is a developerwhowants to find some-
one who can help her in her bug-fix task. To reach this goal,
she may create smaller subgoals, finding and making sense
of the information from each subgoal, which then guides her
next set of explorations. Alice might first want to explore the
files that she has changed for her (incorrectly resolved) bug-
fix task. Shemay thenwant to findwho has expertise in those
files. To do so, she may find developers in the recent past
who modified those files. Or she may go one step further to
find the dependent files on her bug-fix changes, and then

find the developers who were involved with those depen-
dent files. The key point is that in exploratory data analysis
(similar to exploratory programming) users have a goal in
mind that requires further experimentation and creative
problem solving to reach that goal [8], [9].

However, very few interactive tools exist that allow end
users to seamlessly explore their project history at interac-
tive speeds, and across different granularities. This happens
because of the following challenges:

� Data is currently fragmented across different reposi-
tories, and has different formats. For example, ver-
sion control systems store source code and its change
history; issue tracking systems store bugs and discus-
sion comments; mailing lists and chat forums contain
communication records;

� Data scales according to the complexity/duration of
the project and the granularity of analysis. For exam-
ple, typical software projects contain thousands of
artifacts, developed by hundreds of developers, over
many years. If we are to consider the changes at fine
granularities – that is, at the level of lines of code or
methods – the scale of analysis makes interactive
explorations and data visualization infeasible; and

� Data is produced continually over time. For exam-
ple, active projects may have tens to hundreds of
new issues, commits, and e-mail messages per day.
Pre-processing this data in advance and using these
static datasets does not reflect the current state of the
project, as they may become outdated as the project
(and its data) evolves.

While some tools allow project explorations, they typi-
cally focus on a small subset of the data and the questions
that they can answer (e.g., EEL [10] focuses on expertise

� Jose Ricardo da Silva Junior is with the Computer Science of Instituto
Federal do Rio de Janeiro, Eng. Paulo de Frontin, RJ 26660-000, Brazil.
E-mail: jose.junior@ifrj.edu.br.

� Daniel Prett, Esteban Clua, and Leonardo Murta are with the Instituto de
Computaç~ao of Universidade Federal Fluminense, Niter�oi, RJ 24315-375,
Brazil. E-mail: danielcampagna@id.uff.br, {esteban, leomurta}@ic.uff.br.

� Anita Sarma is with Electrical Engineering and Computer Science of Ore-
gon State University, Corvallis, OR 97331 USA.
E-mail: anita.sarma@oregonstate.edu.

Manuscript received 12 Apr. 2019; revised 9 Apr. 2020; accepted 12 Apr.
2020. Date of publication 20 Apr. 2020; date of current version 14 Feb. 2022.
(Corresponding author: Jose Ricardo da Silva Junior.)
Recommended for acceptance by L. Tan.
Digital Object Identifier no. 10.1109/TSE.2020.2988241

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022 377

0098-5589 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2586-1870
https://orcid.org/0000-0003-2586-1870
https://orcid.org/0000-0003-2586-1870
https://orcid.org/0000-0003-2586-1870
https://orcid.org/0000-0003-2586-1870
https://orcid.org/0000-0002-5313-207X
https://orcid.org/0000-0002-5313-207X
https://orcid.org/0000-0002-5313-207X
https://orcid.org/0000-0002-5313-207X
https://orcid.org/0000-0002-5313-207X
https://orcid.org/0000-0001-5650-1718
https://orcid.org/0000-0001-5650-1718
https://orcid.org/0000-0001-5650-1718
https://orcid.org/0000-0001-5650-1718
https://orcid.org/0000-0001-5650-1718
https://orcid.org/0000-0002-1859-1692
https://orcid.org/0000-0002-1859-1692
https://orcid.org/0000-0002-1859-1692
https://orcid.org/0000-0002-1859-1692
https://orcid.org/0000-0002-1859-1692
https://orcid.org/0000-0002-5173-1247
https://orcid.org/0000-0002-5173-1247
https://orcid.org/0000-0002-5173-1247
https://orcid.org/0000-0002-5173-1247
https://orcid.org/0000-0002-5173-1247
mailto:jose.junior@ifrj.edu.br
mailto:danielcampagna@id.uff.br
mailto:esteban@ic.uff.br
mailto:leomurta@ic.uff.br
mailto:anita.sarma@oregonstate.edu

identification, and scopes the amount of data that can be
analyzed). Others allow explorations over project character-
istics and relationships that are defined a priori (e.g., Tesser-
act [11] allows exploration across three interlinked panels
displaying file, developer, and bug dependencies), or
require the end user to write queries [12], [13].

Information Fragments [3] is the only tool that allows
users to “compose” information by combining data frag-
ments about specific work items, files, and their authors. It
allows answering one question at a time (e.g., who is work-
ing on what), but is not suited for re-composition or back-
tracking, and therefore, unsuited for exploratory data
analysis. Moreover, Information Fragments, like the other
tools, operates at a predefined (coarse) granularity level (i.e.,
files). Providing interactive explorations at coarse-grain is
itself computationally expensive and becomes prohibitively
expensive if one has to allow navigation from fine-grain
(changed line of code) to coarse-grain (expertise in a project)
levels and vice versa—a key need in exploratory analysis.

Here we present Dominoes, an interactive, project-oriented
exploration tool, where end users can explore different rela-
tionships across the different software project elements (e.g.,
which developer has changed amethod that I have changed in
the past). Our approach organizes data extracted from soft-
ware repositories into matrices that are then visually repre-
sented as “domino tiles” reflecting relationship between two
project elements (e.g., [commitjmethod]). It allows users to
interact with these tiles, such that tiles can be interconnected
based on a set of matrix operations to derive additional dom-
ino tiles. These derived domino tiles in turn represent specific
project entity relationships (e.g., number of commits in which
two methods co-occurred), and can be used for further explo-
rations or visualizations.

Dominoes has been specifically designed to allow data
exploration by: (1) representing all the data as matrices and
allowing transformation of these matrices by leveraging
software project relationships, (2) allowing users to traverse
between coarse- and fine-grained project explorations, (3)
providing a domino game metaphor for intuitive and inter-
active explorations of software relationships, (4) showing
the intermediate and final results through graphics, and (5)
transferring heavy data computation processing to Graphi-
cal Processing Units Parallelism (GPU).

In previous papers [14], [15], we presented the underly-
ing approach behind Dominoes, how it extracts data from
different software repositories, the types of operations, and
the GPU processing and data modeling. Besides that, in
another paper [16] we presented results from empirical
studies about how our approach can be used to identify
developers’ expertise at a fine-grained level (method), how
it varies across time, and the speedup of running the explo-
rations in GPUs. Thus far, we presented the data analysis
by using a command line interface.

In this paper, in addition to describing the approach, we
introduce a novel interactive Graphical User Interface (GUI)
for Dominoes, to enable end-user interactions. We present a
scenario-based user study with nine participants, where
seven were software professionals. This evaluation not only
helped us assess the usefulness of Dominoes, but also sheds
light on how developers explore software project relation-
ships. We stopped at nine participants, since we reached

saturation, that is, wewere seeing the same patterns inwhich
participants were combining the Dominoes tiles to answer
the scenario questions. The user study focused on answering
the following research questions:

RQ1: How useful is Dominoes in facilitating exploration
of project repositories in terms of effectiveness and
efficiency?

RQ2: What types of explorations do participants perform when
using Dominoes?

Our results show that participants in the study achieved a
success rate of 86 percent in their explorations, taking an
average of 7.25 minutes for answering (project) exploration
questions. Participants used intermediate data visualizations
as check-points to guide and correct their exploration paths.
While there was a learning curve, participants became adept
in completing the study tasks after their initial interactions.

We then performed two additional evaluations. First, we
interviewed five software professionals to determine the kinds
of questions that they have to answer in their everyday work
and how Dominoes could help in answering these questions.
Through these interviews, we identified different real-world
exploratory questions that Dominoes can help answer. Then,
as some participants of the previous evaluation suggested
adding automation features to Dominoes, we implemented a
recommendation support where developers provide the
expected endpoints of an answer and Dominoes shows all
answers that converge to these endpoints. We could observe
that such feature is promising, showing the correct answer in
the top two to five recommendations.

The remainder of this paper is organized as follows:
Section 2 presents the Dominoes approach, summarizing its
architecture, presenting the basic tiles extracted from soft-
ware repositories, and showing operations that allow crea-
tion of new tiles. In the same section we also present the
design rationale of Dominoes GUI. Section 3 presents the
scenario-based user study used to assess the usefulness of
Dominoes. Section 4 presents the feedback collected from
industry professionals regarding the applicability of Domi-
noes in their everyday work. Section 5 presents how a rec-
ommendation feature would help Dominoes to answer the
scenario questions introduced in Section 3. Section 6
presents some related work while Section 7 concludes the
paper and discusses future work.

2 DOMINOES

In this section we first present an overview of the Dominoes
infrastructure and its tiles. We then discuss the design ratio-
nale behind Dominoes. Finally, we present the GUI of Dom-
inoes, using a scenario to explain how users can interact
with its different features.

2.1 Dominoes Infrastructure

Dominoes is designed such that it extracts data from soft-
ware project repositories and crosslinks the associated infor-
mation. It comprises a set of modules that extract and
process the data, as shown in Fig. 1.

The Extractor module (Fig. 1, blue box) accesses the
repositories to extract data that is then used for building

378 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

relationships. For example, commits, issues, discussions
about a commit, or pull request can be collected from
GitHub. Currently, we mine Git (for version management)
by cloning and accessing the remote project repository.
Dominoes then pre-processes the data from the repository
by analyzing which files, packages, classes, and methods
were modified to create a tree of all modifications. We use
the Eclipse ASTParser (suitable for Java-based projects) to
obtain a fine-grained view of the modifications for each
commit. For example, even if we represent changes at the
package level (for a coarse-grained analysis), we know
exactly which classes, as well as which methods were modi-
fied. This information is then stored in a relational database.
After the initial data collection, the database can be updated
incrementally to accommodate subsequent project activities.

After the pre-processing stage, the Basic Tile Builder mod-
ule constructs the basic building tiles. The basic building tiles
are the elements used by Dominoes to organize and repre-
sent data relationships. They consist of two-dimensional
matrices of elements from the database. These tiles then
become available to the users through the UI, allowing
them to manipulate the tiles according to their needs. Basic
building tiles can be combined or manipulated to create
derived building tiles, which can be further combined with
other basic or derived tiles.

Dominoes provides several operations over the data,
which are performed by the following modules: (1) Linear
Transformations for multiplication, transposition, aggregation,
and sorting of tiles, (2) Data Mining to obtain support, confi-
dence, and lift of tiles, and (3) Statistics for calculating the
mean or median of tiles. In Section 2.2 we discuss the basic
and derived tiles together with the linear transformations

provided by Dominoes. The data mining and statistics opera-
tions are not discussed here as they were not used in the anal-
yses presented in this paper, but are detailed in [15].

Performance becomes an issue when we compute rela-
tionships at the fine-grain level. Therefore, in order to allow
efficient computation at interactive speeds, we model the
above operations into a Single Instruction Multiple Data
(SIMD) architecture, making it possible to execute the inten-
sive matrix operations on a GPU device. When a matrix
manipulation is required, Dominoes forks its execution by
triggering the respective asynchronous GPU code (called
kernel) based on the desired operation.

While designing Dominoes, we considered different
approaches for modeling our data in a way that would make
it easy and intuitive for end users to manipulate the data.
One approachwas theMapReducemethod [17]. MapReduce
relies on two important operations: mapping data to a key
and reducing this data to a smaller set. However, among all
the operations available in Dominoes, only one involves
dataset reduction (“aggregate”). Additionally, MapReduce
involves constant I/O operations, leading to a constant data
transfer between CPU and GPU memory. It is important to
note that data transfer between memories is a bottleneck for
GPU applications [18]. Modeling the data structure as matri-
ces allows optimal parallelization, especially in the case of
operations that have only local data dependencies and avoid
code divergence, as in our case.

Except for the CUDA kernel operations, Dominoes is
developed in JAVA. Performing operations over these tiles,
therefore, requires communicating the data with the kernels
in CUDA. Consequently, Dominoes implements a Java
Native Interface (JNI) that is responsible for the Serialization
and Deserialization of building tiles to and from CUDA.

2.2 Dominoes Tiles

Dominoes consists of a set of basic building tiles that can be
combined to produce derived building tiles. Here is a list of
the basic building tiles available in Dominoes:

� [classjmethod] ([CljM]): relationship between a class
and its constituent methods, where cell [i,j] has a
value of 1 when class i contains method j.

� [filejclass] ([FjCl]): relationship between a file and its
constituent classes, where cell [i,j] has a value of 1
when a file i contains class j.

� [commitjfile] ([CjF]): relationship between commits
and files, where cell [i,j] has a value of 1 when com-
mit i adds or modifies file j. Note that the index i
does not denote the commit id.

� [commitjmethod] ([CjM]): relationship between com-
mits and methods, where cell [i,j] has a value of 1
when commit i adds or modifies method j.

� [developerjcommit] ([DjC]): relationship between
developers and their commits, where cell [i,j] has a
value of 1 when developer i is the author of commit j.

� [packagejfile] ([PjF]): relationship between a package
and its constituent files, where cell [i,j] has a value of
1 when a package i contains file j.

� [issuejcommit] ([IjC]): relationship between commits
and issues, where cell [i,j] has a value of 1 when com-
mit j implements/fixes issue i.

Fig. 1. Dominoes’ architecture.

DA SILVA JUNIOR ET AL.: DOMINOES: AN INTERACTIVE EXPLORATORY DATA ANALYSIS TOOL FOR SOFTWARE RELATIONSHIPS 379

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

Dominoes allows different operations to be applied over
these tiles. The multiplication operation (�) multiplies two
dominoes tiles generating a derived tile. In fact, it behaves
in the same way as matrix multiplication. The transposition
(T) operation transposes rows and columns in a matrix that
represents a Dominoes tile. Aggregate (

P
) is an operation

that sums up either all the rows or columns of a matrix, pro-
ducing a column or a rowmatrix (i.e., a vector). As an exam-
ple, applying the “aggregate by row” over the [CjF] tile
([
P

CjF]) produces the count of changes over each file,
whereas aggregating by column on the same tile ([CjPF])
produces the count of files changed by each commit. Finally,
(") and (#) represent increasing and decreasing sorting
orders, respectively. In this case, [C"jF] performs an increas-
ing sort over commit values.

The basic tiles can be combined in many different ways.
Here we list a small set of derived tiles that are computed
by using only multiplication and transposition:

� [methodjmethod] ([MjM] = [CjM]T � [CjM]): repre-
sents method dependencies, where [i,j] denotes the
strength of dependencies between methods i and j.
Additionally, the main diagonal of this matrix repre-
sents how many times a method has been modified
(also achieved through [

P
CjM]). The rationale

behind this matrix is based on logical coupling, as
elements that are co-committed share some pro-
gramming logic. We can also create an [MjM] matrix
through program analysis–in this case it would be a
basic building tile. Such [MjM] matrices have been
explored by Steward [19] in creating Design Struc-
ture Matrices.

� [classjclass] ([CljCl] = [CljM] � [MjM] � [CljM]T):
represents class dependencies, where [i,j] denotes
the strength of the dependency between class i and
class j. In Dominoes, results at a higher level of
abstraction can be easily obtained by combining tiles
from lower level (e.g., composing this [CljCl] tile
with [FjCl] or [PjF] � [FjCl] would raise the abstrac-
tion to the file or package level, respectively).

� [issuejmethod] ([IjM] = [IjC] � [CjM]): represents the
methods that were changed regarding an issue.
Applying an aggregation operation over the (bugfix)
issues allows identifying the methods that are
“buggy”, as these methods tend to have a high num-
ber of issues related to them.

� [developerjmethod] ([DjM] = [DjC] � [CjM]): repre-
sents the methods that a developer has changed and
can be used to identify experts on a particular
method.

� [developerjclass] ([DjCl] = [DjM] � [CljM]T): repre-
sents classes that a developer has changed. [DjCl]
uses the composition operation to provide expertise
information at the class level, which is typically used
during bug triaging [3].

� [developerjdeveloper] ([DjD] = [DjM] � [MjM] �
[DjM]T): represents the social dependency among
developers due to the underlying technical depen-
dencies in their work. This derived building tile uses
other derived building tile ([MjM] and [DjM]) in its
definition.

� [commitjcommit] ([CjC] = [CjM] � [CjM]T): represents
similarity among commits by considering common
methods that were changed by them.

2.3 Design Guidelines

Dominoes’ graphical user interface was designed to enable
end users, who in our case can be project managers or
developers, to perform exploratory data analysis over their
projects. The Dominoes’ design leverages the following set
of guidelines when blended together, provide a highly
interactive and powerful tool for exploratory analysis of
software engineering data.

Domino tile Metaphor: A primary goal of Dominoes is to
allow a user to reason about the data relationships among
project elements. Additionally, we want users to be able to
explore different project relationships. We, therefore, use
graphical elements that resemble domino tiles to allow
users to explore their project by combining these tiles. Users
can try different (data) tile combinations and operations,
such that they can explore different relationships among the
project elements.

We allow direct manipulation of graphical pieces,
instead of a query-based approach [12], [20] because: (1) the
tiles allow users to more easily visualize the different project
elements, and how they can be combined together, (2) users
can incrementally compose their final query by exploring
the different project relationships, and (3) users do not need
to know or learn a specific query language, or formally
express ahead of time how the data should be integrated;
creation of appropriate queries is often a barrier for end
users [3].

Data, Operations, and Visualizations are First-Class Ele-
ments. Performing exploratory data analysis involves
exploring and evaluating different aspects of the (project)
data. We leverage visualizations to enable users to check
the results of their exploration, and refine their exploration.
Further, we explicitly treat data (project elements), operations
that can be performed on the data, and visualizations as first-
class entities, such that users can seamlessly explore differ-
ent data elements by operating over the tiles, and checking
the results of explorations through visualizations.

Seamless Transition Across Granularities. Different types of
questions can be answered at different levels of granularity.
For example, a class may need to be refactored if there are
multiple developers working on the same class, which
might lead to merge conflicts. Similarly, a package may
need to be refactored to match the structure of a distributed
team to improve coordination (Conways Law [21]). Some-
times, the same question can be asked at different levels of
granularity. For example, developers’ past edits to a class
can be used to determine the developer who is an expert on
a class [1]. However, edits at the method level can reflect
the expertise coverage of a developer on a class [16]. We,
therefore, allow seamless transition among granularities
(low to high) by leveraging different types of composition
matrices ([classjmethod], [filejclass], [packagejfile], etc.) and
operations over these matrices.

Exploration at Interactive Speed. As noted, a key require-
ment of Dominoes is to support project exploration across
different project elements and granularity. For this to be

380 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

successful, the tool needs to have high computation perfor-
mance. Large software projects have hundreds of develop-
ers, thousands of files, which in turn may contain many
methods, and thousands of commits. This quickly becomes
a big-data problem. We therefore, allow incremental data
updates, use GPU for big data transformations (matrix
transformations), and adopt thresholds in visualizations
and in segmenting the data. Our GPU implementation
achieved up to three orders of magnitude of performance
increment when compared with our efficient matrix-proc-
essing algorithms running in CPU [16].

Exploration History: A key aspect of exploratory data anal-
ysis is investigating different ideas, and then identifying a
(good) solution. Such an exploration requires backtracking
of ideas or jumping off of a previous (partial) analysis. We
allow users to perform such exploration of project data
through: (1) undo-redo of operations, (2) derived tiles that
represent partial analysis steps that users can reuse, and (3)
exploration paths that are archived for each derived tile so
that users can understand how they arrived at a solution
(derived tiles), or reuse an exploration path partially or in
its entirety. The exploration paths can be viewed in a tree
format (along with backtracks).

Extensibility. A primary goal of our work is to allow
Dominoes to be easily extended to include different types of
data, operations, or visualizations. We, therefore, decouple
the data collection from consumption. New types of data

can be easily collected by creating wrappers for different
types of repositories (e.g., a choice of version control sys-
tems such as SVN, Git, Mercurial), or different types of data
(e.g., version histories, issues, email). Currently, we collect
data from version histories (Git) and extract issue informa-
tion from Bugzilla. Additional wrappers for different repos-
itories or types of data can be “plugged” into the system.
Similarly, we currently have visualizations such as, network
graph, matrix view, tree structure, and bar chart. Other vis-
ualizations, such as heat-maps or radial charts, can be easily
added. This extensibility of data collection and visualization
is possible because Dominoes uses matrices, a simple and
general data structure.

2.4 Dominoes GUI

Dominoes interface comprises four panels as shown in
Fig. 2. The top pane (Fig. 2 (a)) allows users to select a proj-
ect to work with, as well as the time frame for analysis.
Besides that, it presents a timeline view of the project activi-
ties regarding the number of commits and the number of
new issues. Users can use the “Project” button to import a
new project or update an existing project with new data.
Additionally, the library panel (Fig. 2 (b)) holds all the dom-
inoes tiles (the basic building tiles and the derived ones).
The editor canvas (Fig. 2 (c)) is where users can compose
the tiles or operate over them. Finally, the visualization

Fig. 2. Dominoes’ main interface. It is composed of four panels: (a) project selection, (b) library of tiles, (c) editor canvas, and (d) visualizations.

DA SILVA JUNIOR ET AL.: DOMINOES: AN INTERACTIVE EXPLORATORY DATA ANALYSIS TOOL FOR SOFTWARE RELATIONSHIPS 381

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

canvas (Fig. 2 (d)) is used for presenting different types of
data visualization allowed by Dominoes.

We explain the features of Dominoes through a hypo-
thetical scenario. Let us consider Alice as our persona. She
needs to identify remote teammembers who can collaborate
with her. In the rest of the section, we describe how Alice
uses Dominoes to get this information. Note, we use the
(real) data from the Apache Derby project when explaining
this (intentionally simple) scenario. In real life, developers
can explore more complex software relationships.

Alice starts Dominoes and accesses its main window
(Fig. 2). Alice decides to use the last thirteen months for her
analysis (Jan 2013 to Jan 2014) and, after selecting the period
in the project panel, she clicks on the “Set” button to start
the analysis. Dominoes then generates a collection of basic
building tiles representing relationships in the project
(Fig. 2 (b)), as discussed in Section 2.1.

Alice decides to start her explorations by first looking at
each tile. She decides to pick the [commitjmethod] ([CjM])
and [classjmethod] ([CljM]) tiles. To perform this action, she
double clicks these tiles in the library pane (Fig. 2 (b)) to
copy them to the editor canvas pane. The editor canvas
(Fig. 2 (c)) with the tiles is shown in Fig. 3.

Alice is interested in knowing which commits were
related to which classes, she therefore tries to combine the
[CjM] and [CljM] tiles. However, note that to combine (mul-
tiply) the matrices they need to have an equal number of
column and row for the first and second matrix, respec-
tively, which translates to the same edge relationship. Since
[CjM] and [CljM] do not share the same dimension, Domi-
noes does not allow Alice to connect these two tiles (red col-
ored compartments in Fig. 4).

Alice realizes that the relationship types to be combined
(method-method) needs to be aligned between the two tiles.
So, she transposes the [CljM] matrix by double clicking the
tile, which graphically swivels the tile in the editor canvas,
as shown in Fig. 5. As an alternative, she could have right
clicked on the tile and selected “transpose” operation.

Once the [CljM] matrix is transposed, Dominoes allows
both tiles to be connected by presenting green colored com-
partments. This leads to the derived tile [CjCl], containing
information about the commits involved with the classes.
Fig. 6 illustrates this operation and the derived tile.

In order to avoid redoing these operations, she saves the
tile by clicking over the piece and selecting the “save”
option. Once she performs this operation, the derived tile
becomes available in the library panel, as can be seen in
Fig. 2 (b) (the last piece in the column). In order to ensure
that she remembers the logic behind the derived tile, since
there can be other ways to achieve the same relationship,

each saved tile shows its history (small gray letters) below
its name (Fig. 6). Hovering over a tile also provides the
information about that tile in a tool tip, as well as the num-
ber of rows and columns in the matrix.

Alice then continues her exploration in Dominoes. She
decides to create a [commitjcommit] matrix by combin-
ing the [CjCl] tile with its transpose to generate the
[CjC] tile. She then multiples the following tiles: [DjC]
([developerjcommit]), [CjC], and [DjC] transposed to
generate the [developerjdeveloper] matrix. This matrix
identifies developers who committed over the same
classes, which presents information for identifying which
developers can replace others since their commits
involved a common set of classes. Alice decides to save
the [DjD] tile for future use.

Now that Alice has created the underlying data, she
wants to identify which developers are interconnected with
her. Dominoes allows four different types of visualizations:
network graph, matrix view, tree structure, and bar chart,
as shown in Fig. 2 (d) and Fig. 7.

As Alice wants to visualize the interconnection among
developers, she selects the “Graph” view to visualize the
[DjD] matrix. This visualization (Fig. 2 (d)) shows develop-
ers (blue nodes) who are interconnected because of a com-
mon set of classes that they committed together. The view
allows Alice to set a threshold on the edge weight; that is,
she can filter out developers whose edges (number of con-
nections) are below a certain value. When she searches for
her name (lower right corner of the UI in Fig. 2 (d)), Domi-
noes highlights in yellow the node representing her. Then
she can follow the edges from her node to identify the two
other developers who are connected to her. Hovering over a
node shows the name of the developer (here, Bob) con-
nected to her. Besides that, as seen in the top left of Fig. 2
(d), Dominoes allows multiple visualizations to be open in
separate tabs allowing different perspectives. All charts stay
active as long as the tile that was used to create the visuali-
zation remains in the editor canvas.

3 USER STUDY

Our evaluation goal is to understand how developers would
explore project relationships and assess how Dominoes can
facilitate such explorations. Through a scenario-based user

Fig. 3. Editor canvas after adding [CjM] and [CljM] tiles.

Fig. 4. Wrong combination feedback provided by Dominoes.

Fig. 5. Dominoes’ piece transposition.

Fig. 6. Dominoes’ piece connection, producing the derived tile [CjCl].

382 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

study we assess Dominoes in terms of its effectiveness, effi-
ciency, and usability in performing project explorations. We
also investigated the different types of exploration,
backtracking, and corrections participants performed in
their exploratory analysis, resulting in two research
questions:

RQ1: How useful is Dominoes in facilitating exploration
of project repositories in terms of effectiveness and
efficiency?

RQ2: What types of explorations do participants perform when
using Dominoes?

3.1 Methodology

We used a scenario-based, think-aloud study, where we
presented participants with situations where they had to
investigate a project’s history using Dominoes to answer a
set of questions. Think-aloud studies help us understand
participant behavior–which aspects of Dominoes they con-
sidered using, where they faced problem, how they prob-
lem-solved. A subset of the Apache Derby project history
has been used to formulate the following four scenarios
(i.e., tasks). The project history comprised data from Jan
2013 to Jan 2014. The selected period included 602 commits,
1,316 changes to classes, 7,792 changes to methods, and 264
issues. We chose Apache Derby as our test project because it
has been stable, long-living, and active since its beginning.

3.1.1 Scenarios

Participants were presented with four scenarios. Each sce-
nario was guided by the list of questions that developers
ask, as presented by Fritz and Murphy [3]. They identified
78 questions grouped into eight domains. Our scenarios
build on these questions, but map to more than one ques-
tion. We selected those questions (from [3]) that require
investigation across at least two software dependencies and
include a historical component. We chose compound ques-
tions so that we could: (1) investigate the process followed
by participants as they explored different aspects of their
project data and (2) assess Dominoes’ usefulness in aiding
this process. Of course, end users can explore simpler or
more complex software relationships. Each consecutive sce-
nario was slightly more complex, with respect to the com-
plexity of operations and granularity of data.

We had all participants follow the same order of tasks as
we wanted participants to first learn to use Dominoes in
less complex situations. We recognize that such a task
sequencing leads to learning effects, but this is not a prob-
lem as all participants had the same training opportunity.
In the following, we discuss each scenario, as well as the
mapping of these scenarios to the questions (referred to as
Q#) in Fritz and Murphy work [3].

Scenario 1: “Richard is planning on performing a major refac-
toring over the code he has worked on in the last 3 months. He
wants to analyze the commit history of his modifications to iden-
tify which developers might be affected by his refactoring. How

Fig. 7. Different types of visualizations allowed in Dominoes: (a) the contextual menu for selecting the type of visualization, (b) tree structure,
(c) matrix, and (d) bar chart visualization.

DA SILVA JUNIOR ET AL.: DOMINOES: AN INTERACTIVE EXPLORATORY DATA ANALYSIS TOOL FOR SOFTWARE RELATIONSHIPS 383

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

can he do so?” This scenario maps to Q13 (“Who is working on
the same classes as I am and for which work item?”) or Q26 (“How
do recently delivered changes affect changes that I am working
on?”). Oneway a user can answer this scenario is by identify-
ing all the developers whose changes are related to Richard’s
changes (Richard is an actual Derby developer). One possi-
ble answer when considering changes at the method level is
[DjD] = [DjC] � [CjM] � ([DjC] � [CjM])T , where similar
commits (i.e., changing the same methods) are used to iden-
tify the dependency among developers. This scenario repre-
sents the basic usage of Dominoes, where tiles can be
combined based on their underlying relationships by using
themultiplication and the transposition operators.

Scenario 2: “Knut has been a core developer in Derby, but
lately has too many issues to resolve and is not able to fix them
quickly enough. Therefore, his manager has decided to give him a
team of developers. Knut would like to include in his team people
he has worked with before, in the context of fixing issues in the
past 6 months. How can Knut identify the developers he should
include in his team?” This scenario maps to Q11 (“What clas-
ses has my team been working on?”), Q43 (“Who has made
changes to [a] defect?”), or Q1 (“Who is working on what?”). An
ideal solution is identifying the issues that were related to
commits that Knut made, and then identifying other devel-
opers who also committed to these issues: [DjD] = [DjC] �
[IjC]T � [IjC] � [DjC]T . This scenario is more open-ended
than the previous scenario, incorporates additional data
source (issues), and spans a longer time period.

Scenario 3: “A senior developer, Susan, wants to identify the
appropriate developer to be assigned to a new task that requires
significant modifications to the class java.drda.org. apache.derby.
drda.NetworkServerControl. She wants to do so using the devel-
opment history of the class in the last 4 months. How can Susan
identify the best developer for this task?” This scenario maps to
Q5 (“Who to assign a code review to? / Who has the knowledge to
do the code review?”), Q6 (“What have people been working
on?”), or Q8 (“What is the evolution of the code?”). An ideal
solution involves the following operations: [DjCl] = [DjC] �
[CjM] � [CljM]T . This operation is more complex than the
previous ones, as there is no piece that directly involves
changes (commits) to a class. Participants have to navigate
from fine-grain (method) to coarser grain (classes). They
also need to use the appropriate visualization (graph) to
find the right information from that visualization.

Scenario 4: “The Derby team has realized that they have not
refactored their code base in a while and functionalities have been
added in an ad-hoc manner, so they need to refactor their code
base. However, they have limited time for doing this, so they want
to first identify the classes that are the most brittle – that is, classes
that have undergone a lot of changes in the last six months of
development. How can the team do this refactoring?” This sce-
nario can be mapped to Q23 (“Which class has been changed
most?”), Q8 (“What is the evolution of the code?”), or Q27
(“What code is related to a change?”). This scenario is the most
open-ended, and there are several different ways to answer
it. One possible answer is: [CjCl] = [CjM] � [CljM]T ;
[
P

CjCl#], where a user sums the number of times that a
class’s method has changed, followed by a (decreasing)
sorting operation on the classes. A user may also analyze
how much of a class has changed (the number of methods
in the class that has been edited).

3.1.2 Participants

Wewere interested in howmanagers and developers would
use Dominoes to explore project relationships. Since novice
developers as well as non-programming managers will
need to understand their projects, we selected developers
with different backgrounds and experiences. Table 1 shows
the general participant demographics.

All participants had experience in software development
and version control systems. Seven out of nine (P3-P9) had
experience working in an industrial setting: two with less
than 2 years of experience, whereas five had 4 or more years
of experience. Of the two participants with only academic
project experience, P2 was a novice (2 years) and the other
(P1) had 4 years of experience. Three participants (P5, P8, P9)
had experience exploring version control repositories as part
of their job. They had used the command line options to ana-
lyze version histories to identify who made a change in the
past or how a class had evolved. Participants had varied aca-
demic backgrounds – ranging from BS (four), MS (four), and
Ph.D. (one) in computer science, stating that they had
worked on programming as part of their academic studies.
Seven participants weremen and twowerewomen.

3.1.3 Study Design and Analysis

Participants were instructed on the overall experiment
setup to get their (informed) consent. We then explained the
think-aloud method, followed by a video tutorial about
Dominoes. Participants were also reminded about the con-
cepts of matrix multiplication and transposition. These
steps took around 25 minutes. After this, we gave partici-
pants five minutes to explore Dominoes, using a different
database from the one used in the experiment.

Once participants had finished the training, they were
presented with the four scenarios, one at a time. Each sce-
nario was time-boxed to 15 minutes; participants were asked
to move to the next task after this time. We time-boxed each
scenario so that all participants could experience all the sce-
narios. We did not provide any help during the session. At
the end of each scenario, participants saved a screenshot of
their solution. Participants talked-aloud when answering
question for each scenario. We recorded the audio of what
the participant said and their screen-capture video.

The first author, sitting off to the side, took notes about
unusual actions or problems that participants faced. At the
end of the study, participants were given a short break,

TABLE 1
Participant Background

P# Gender CM Experience Degree Repo Analysis Experience
Industry Academic

P1 W - 4 years Ph.D. No
P2 M - 2 years MS No
P3 M 1 year 4 years MS No
P4 M 4 years 3 years BS No
P5 M 0.5 years 5 years MS Yes
P6 M 8 years 2 years BS No
P7 M 4 years 1 year BS No
P8 M 8 years 4 years BS Yes
P9 W 7 years 2 years MS Yes

384 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

during when the author conferred his notes and the record-
ings to identify actions that needed clarifications. He then
conducted a semi-structured, retrospective interview. For
unusual actions or mistakes, he replayed the screen-capture
video to participants and asked them about their action(s).

At the end of the interview, participants filled out an exit
survey containing the following questions about their expe-
rience with Dominoes: (1) Were Dominoes tiles easy to interact
with? (2) Were Dominoes derived tiles easy to create and use? (3)
Were Dominoes operations easy to use? (4) Were Dominoes visu-
alizations useful in answering the questions? and (5) Did Domi-
noes help you to investigate the Apache Derby project? These
questions had a five-point Likert scale, ranging from
Strongly Disagree (1) to Strongly Agree (5). Additionally,
participants used the Microsoft Product Reaction Card1 to
best select their experiences during Dominoes usage.

We answer RQ1 through a quantitative analysis of partic-
ipant data and feedback (Section 3.2.1), and RQ2 through
qualitative analysis, as detailed below.

We used a baseline code single word set inspired by pre-
vious research [22], [23] to analyze the exploration behavior
of participants and the barriers they faced (Section 3.2.2). We
created new codes to represent participant actions when
using Dominoes (Table 4). We coded the video recording by
annotating the video with the specific actions. Two research-
ers performed this action on a participant’s data and per-
formed negotiated agreement to reach consensus about the
code categories and the rule set. A code was dropped if we
could not reach consensus after three rounds of discussions.
After this step, the first author coded the rest of the partici-
pant data.

3.2 Results

Here we present our evaluation results structured around
our research questions.

3.2.1 How Useful is Dominoes in Facilitating

exploration of Project Repositories?

We answer this question by analyzing Dominoes in terms of
its effectiveness, efficiency, and user satisfaction.

Effectiveness. We calculate the correctness scores of partici-
pants for each scenario (see Table 2). On an average 3.44 (out

of 4) answers were correct (median 4). Five out of nine partici-
pants got all answers correct; whereas, three participants got
one answer incorrect, and one participant got two answers
incorrect (P5). Further analysis of P5, showed that he did the
least amount of exploration of the different tiles and ways to
combine them (see Section 3.2.2). Moreover, he was convinced
that his answerswere correct for all the scenarios.

All participants answered scenario 4 correctly, despite it
being an open-ended question. When considering P5,
although he did not explore different options for this sce-
nario, he did formulate the scenario correctly. This allowed
him to reuse the concepts (e.g., sorting the bar graph) from
Scenario 3, which he had answered correctly.

Finding 1: Participants using Dominoes reached correct
answers in 86 percent of the cases.

Learning. On average, participants took 7.25 min. to com-
plete the scenarios (see Table 2). Some participants (P3, P5,
P8) finished the scenarios relatively quickly (avg. = 5.25
min), whereas some (P1, P4, P6, P7, P9) took longer (avg. =
8.6 min). P8 took the least amount of time per scenario (avg.
5.05 min) and got all the questions correct. On the other
hand, P5 spent less time on scenarios 1 and 2 and got both
of them wrong. Apart from P5, there is no clear pattern
between the time spent on a question and correctness. Note
that both P5 and P8 performed repository analysis as part of
their jobs, however, P8 had more experience.

Past studies have shown that after a substantial training
on SQL (1.5 hours), users could write queries that join two
domains in a mean time of 5.10 minutes [24]. The first two
scenarios that required combining data from two domains
(S1: [DjC] � [CjM], S2: [DjC] � [IjC]T) were completed in an
average of 5.48 and 4.50 minutes, respectively. This is very
close to what can be accomplished using queries, but only
after extensive training. In contrast, our participants had
only 15 minutes of training in Dominoes.

Scenarios 3 and 4 were open-ended and needed more
exploration, and hence more time (10.96 min and 8.06 min,
respectively). Scenario 3 took the longest time. We found
this was because participants had to sort on a specific col-
umn and use the bar chart, therefore, they had to figure out
the right operation (sort), on the right data column/tile, and
the correct way to order the bar chart.

Please note that P7 spent 15.6 minutes (exceeding the
time-box of 15 minutes). It was due to a short computer frez-
ing during screen capture. However, the answer to the
question had been formulated within the specified time.

Finding 2: Dominoes has a 15-minute learning curve.
After 15 minutes of training, participants could use
Dominoes (taking about 5 min. for answering each struc-
tured scenario).

Satisfaction. We infer the satisfaction of using Dominoes
based on our survey and the terms chosen by participants
in the Microsoft Reaction Card2. All the questions were
answered by the participants in a private room.

TABLE 2
Task Completion Times (in Minutes) and Correctness (@)

or Failure (•)

P# Scenario Average
S1 S2 S3 S4

P1 7.3 @ 3.7 @ 12.4 @ 10.1 @ 8.38
P2 3.9 @ 6.1 @ 8.9 @ 7.2 @ 6.53
P3 4.2 @ 3.8 @ 6.4 • 6.1 @ 5.13
P4 7.5 @ 5.8 @ 14.2 @ 5.9 @ 8.35
P5 3.7 • 2.5 • 7.8 @ 8.3 @ 5.58
P6 8.1 @ 3.4 @ 10.4 @ 10.1 @ 8.00
P7 7.3 @ 8.1 • 15.6 @ 8.3 @ 9.83
P8 3.1 @ 4.2 @ 8.7 @ 4.2 @ 5.05
P9 4.2 @ 2.9 @ 14.2 • 12.3 @ 8.40
Average 5.48 4.50 10.96 8.06 7.25

1. Developed by �. 2002 Microsoft Corporation. All rights reserved.
2. Developed by and � 2002 Microsoft Corporation. All rights

reserved.

DA SILVA JUNIOR ET AL.: DOMINOES: AN INTERACTIVE EXPLORATORY DATA ANALYSIS TOOL FOR SOFTWARE RELATIONSHIPS 385

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

The exit interview contained Likert Scale questions
about the ease of use of Dominoes (Table 3), where
answers could range from strongly disagree (1) to strongly
agree (5). The results show that all answers are positive –
all above “agree”. Of special note is Q5, which was about
how useful was Dominoes in performing exploration of
the Apache Derby project. It received the highest score
(4.89). The lowest score (4.11) is for how easy it was to use
the operations; two scored their answers as neutral (3).
These participants were P5 and P7; both had performed
explorations that deviated from the results, and had incor-
rect answers. The difficulties in using the operations likely
affected their perceptions (and their results). These
responses reflect that participants were satisfied with using
Dominoes. However, we recognize that participants could
be influenced by the wording of our questions and the fact
that they were responding to a tool evaluation. We discuss
this further in Section 3.3.

We also asked participants to rate each of the four scenar-
ios on the ease of performing exploration. The average Lik-
ert scores for the scenarios are: 4.56 (S4), 4.44 (S2), 4.11 (S1),
and 3.33 (S3). The median scores for all scenarios was 5,
except for S3, which was 3. This was a scenario that two par-
ticipants got wrong (P3 and P9), and took the longest time
(avg. 10.56 min), which is a likely reason for the neutral
answer from participants.

We present the results of the Microsoft Reaction Card
through a word cloud depicting the frequency of terms
selected by participants (see Fig. 8). The five most frequent
words were: Efficient (6), Time-Saving (5), Fast (5), Innova-
tive (5), and Useful (5). These results show that participants
found Dominoes to be quick and efficient in allowing them
to explore the project repository. We believe that the ability
to pick a tile (project relationship), compose it with other
tiles, and visually verify the answer helped participants
quickly find answers. As P6 mentioned: “I am impressed...
Dominoes produces data very fast”.

Participants also found Dominoes to be innovative (three
additional participants chose “Novel” as a term), and
wanted to learn and “play” with the tool. Participant P1
said: “Congratulations. It [Dominoes] is an interesting tool.
When it will be available for use?”

A few participants found the tool to be Complex (2) or
Too-Technical (1). These were participants with the lowest
experience with version control systems and no experience
with analyzing data repositories. This suggests that there is
a learning curve associated with performing repository
analysis using Dominoes, especially in framing the explora-
tion as a composition of software relationships. A larger,
longitudinal study is needed to understand the severity of
the learning curve and its impact on project exploration.

Finding 3: Most participants noted Dominoes as efficient,
time-saving, fast, innovative, and useful tool through
Microsoft Reaction Cards.

3.2.2 What Types of Explorations Do Participants

Perform When Using Dominoes?

To better understand the kinds of exploration behavior
facilitated by Dominoes, we qualitatively analyzed partici-
pant actions. We frame our results by first analyzing the
steps that participants took to perform their explorations.
We then investigate the effects of the different navigation
strategies employed by our participants.

Analytics Step

We categorized the different analytic steps taken by our par-
ticipants into four main categories: exploration, verification,
adjustments, and organization. Within each of these catego-
ries, we identify the specific exploration behavior. Table 4
details these steps further.

Based on recorded videos, each participant’s actions
were encoded using the negotiated agreement as described
earlier. Fig. 9 presents a visual overview of the different ana-
lytic steps taken by participants per scenario (task). Each

TABLE 4
Categories Used for Classifying Participants’ Steps

Code Description

Category Name

Exploration Move Fwd. Performs actions towards the
correct solution

Deviate Performs actions that do not lead to
a correct solution

Repeat Repeats past (wrong or right) actions

Verification Checkpoint Verifies if the actions thus far are
correct

Confirm Checks another visualization to
ensure the correctness of answer

Adjustment Viz. Tweak Adjusts some aspects of the
visualization

Tile Tweak Adjusts some aspect of the tile
Backtrack Abandons current exploration path

Organization Save Saves derived tiles
Reuse Uses derived tiles

TABLE 3
Participants’ Satisfaction

Question Avg. (med)

Q1. Easy to interact with Domino tiles 4.44 (5)
Q2. Easy to create and use derived tiles 4.56 (5)
Q2. Easy to use operations over tiles 4.11 (4)
Q4. Visualizations were useful to answer tasks 4.78 (5)
Q5. Dominoes helped in project exploration 4.89 (5)

Fig. 8. Word cloud chose by participants using theMicrosoft ReactionCard.

386 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

participant operation is represented as a cell (3 millimeters
wide), with specific user actions (e.g., save, reuse, backtrack)
annotated in the graph with an icon. The length of each bar
represents the number of steps a participant performed dur-
ing the study.

We color the segments of the graph based on their explo-
ration type. When participants use tiles or operations that
lead towards the correct solution (i.e., “Move Forward”),
these operations are colored green. On the other hand,
when participants use tiles or operations that do not lead to
the right solution (i.e., “Deviate”), such operations are col-
ored red. Finally, when participants are repeating previous
actions, they are colored in yellow with horizontal lines in
green or red, should these actions lead to the right solution
or deviation, respectively.

For each scenario, we mark in the graph whether the par-
ticipant got the correct answer (a tick mark) or failed to do
so (a cross mark).

To contrast different types of user behavior let us con-
sider participants P7 and P5. P7 had 4 years of industry and
some experience in academic development (1 year). He had
no experience in repository analysis. He performed the larg-
est number of actions using the tool (283 actions and 48
tiles), and had many actions where he was deviating from
the path (26 actions), as well as repeating right actions (9)
and wrong actions (2). He frequently used the visualizations
as check points to understand whether he was in the right
path (or still on the wrong path). Based on these visualiza-
tion checks, he backtracked his investigation (in both S1 and
S4). He was relatively quick in the actions (see Table 2).

In contrast, P5 had 5 years of experience in academia, but 0.5
years in industry; and had experience in performing repository
analysis. He got incorrect answers to S1 and S2. He also per-
formed the fewest actions (92 steps and 25 tiles). He never
recovered from the deviations (in both S1 and S2). He used the
visual checkpoints for all scenarios, but for S1 and S2 he did not
realize that the data presented by the visualizationwaswrong.

Finally, we take the example of P2, the person with no
experience in industry or repository analysis. We observe
that P2 obtained correct answers for all the scenarios. He
deviated in his explorations, but was able to recover by
using checkpoints. We see that although P2 was a novice,
he was able to easily grasp the working of Dominoes. In
fact, he recommended additional functionality such as abil-
ity to order rows in the matrix visualization.

In summary, our observations and participant feedback
indicate that participants investigated different exploration
paths using the Dominoes interface, which was quick and
easy to operate. In the following subsections, we discuss the
participants’ exploration behaviors further.

Finding 4: Dominoes allowed participants with different
backgrounds to perform different types of data
exploration.

Alternative Ideas

We found that exploring multiple ways to analyze relation-
ships was helpful in reaching the correct answer. This show-
cases the usefulness of allowing exploratory analysis, and
multiple paths to solving a problem–key principles of
Dominoes.

The number of unique and derived tiles used by partici-
pants and the correctness of their results indicate the useful-
ness of exploration. Fig. 10 shows the total number of
unique derived tiles (blue) and derived tiles (green), sorted
based on the total number of correct answers.

Fig. 9. Participants’ action map.

DA SILVA JUNIOR ET AL.: DOMINOES: AN INTERACTIVE EXPLORATORY DATA ANALYSIS TOOL FOR SOFTWARE RELATIONSHIPS 387

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

Unique tiles: Each unique derived tile represents different
relationships among artifacts, and thus a different perspec-
tive of analysis. For instance, one can explore the knowledge
of a developer by using the edited files, leading to tile [DjF]
= [DjC] � [CjF] (coarse grain). The same insight can be
obtained by inspecting the edited methods by a developer,
leading to tile [DjM] = [DjC] � [CjM] (fine grain). Thus, if a
participant was stuck when analyzing the [DjM] tile, she
could derive the [DjF] tile and continue her analysis, as
[DjM] can easily connect with [CljM]T � [FjCl]T .

Our participants performed such explorations reviewing
data from alternative perspectives. In fact, some used explo-
ration paths we had not envisioned. For instance, in S3 we
expected participants to use the total amount of modifica-
tions per class ([

P
DjCl]). However, P1 and P5 answered

the scenario by using a [DjCl] tile. They used a graph to
visualize this tile and tweaked the threshold until just one
edge remained. Similarly, P3 also used a graph to answer
scenario 4. Participants using alternative ways of composing
information, which in turn helped them arrive at the correct
solution.

Finding 5: Dominoes allowed participants to explore
alternative and unique solutions for the same problem.

Derived Tiles. The total number of derived tiles, which
mirrors the number of unique tiles, also shows that when
participants explored composing data in different ways
they did better. At one end of the spectrum, we have P5
(leftmost participant in Fig. 10) with the minimum number
of derived tiles (13) and just 2 right answers. On the other
hand, P6 had the maximum number of derived tiles (29)
and all four scenarios having correct answers.

When we unpack the exploration behavior of the partici-
pants in Fig. 10, we see that exploration (high number of
derived tiles) helped participants (P4, P1, P6) get (all) cor-
rect answers. For example, P6, the participant with the most
derived tiles, tinkered a lot. He combined tiles in different
ways to visualize the relationship in the data from different
perspectives. P6, said: “What about if I combine these two pieces
[tiles]? Maybe this path will lead to the answer”.

Moreover, we find that exploration was helpful when
users were struggling to find the right answer. For example,
P5 barely performed any exploration when he was in the
“wrong path” (red patches in Fig. 9) and ended up with
incorrect solutions for scenarios 1 and 2. However, he spent
more time in scenarios 3 and 4, performing checks and
tweaking the visualization to arrive at the correct answers.
On the other hand, P7 had the most number of deviating
actions performed in the study (45 deviation steps in

Fig. 11). However, these explorations allowed him to
recover, and he was able to correctly answer three scenarios
(S1, S3, S4). In scenario 2 (S2), where expertise was to be
computed based on the number of issues fixed; P7 however
used the number of file modifications. In the retrospective
interview, we found that he misunderstood the scenario. He
said: “I did not notice it [that issue fix was required]”.

P2 and P8 show a different pattern. Both have all correct
answerswith notmuch exploration. Our interviews revealed
that both participants understood the concept of Dominoes
very quickly. P8 had experience in repository analysis and
was used to combining data based on the underlying rela-
tionships. P2 did not have experience in repository analysis,
but had background in data provenance, allowing him to
understand the concepts underling Dominoes quickly. He
said: “Dominoes pieces [tiles] are self-explanatory and it is possible
to easily understand relationships”.

Finding 6: Dominoes tends to foster explorations; the
majority of participants who explored more were likely
to get correct answers.

Parallel Exploration. A key aspect of exploration is being
able to compare and contrast alternatives [25]. Dominoes
allows users to explore multiple data transformations at the
same time. Users can simply keepmultiple tiles in the canvas
(where a tile itself can be the output of data transformations).
They can also combine different transformation paths to get
to a solution. Dominoes also allows parallel explorations of
its visualizations.

We found multiple cases (P1 and P9) where participants
performed parallel explorations during data manipulation.
For example, P1 in S3 made a wrong operation (aggregation)
on a tile, but she realized this after checking the visualization.
She then resumed working on a previous exploration path
(tile) that she had left on the canvas. She realized that her pre-
vious path could be re-used and said: “I’ve made a mistake but
I can continue the exploration from this path”, and switched to
that path to reach a correct solution.

Finding 7: Dominoes supports parallel exploration,
allowing users to compare and contrast alternatives.

Checking Intermediary Results

When exploring the different types of data transformations,
participants often checked their intermediate results. These
checkpoints were steps where participants visualized a data
fragment (base or derived), annotated with a “magnifying
glass” in Fig. 9. As an example, participant P6 first looked at
the [DjC] tile to see the activities of a developer. He recog-
nized that he was in the right path, but needed to see the
activities at the file-level, so he created the [DjF] tile and
checked the data again.

We found that the ability to check intermediate steps was
an important part of participants’ exploratory data analysis.
Participants used checkpoints to test if their “strategy” had
worked. As an example, after being stuck for a while on S1,
P6 created the right derived tile and checked the output
using the visualization. He exclaimed: “That’s it! My ratio-
nale to answer the question is right and now I know how to

Fig. 10. Total of derived and unique tiles, and right answer.

388 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

proceed”. On the other hand, P2 working on S2 performed a
checkpoint and realized he was in the wrong direction, and
said: “It will not help me as it is a diagonal matrix. It does not
make sense to be used”.

Our study had about 17.11 checkpoints per participant.
Table 5 presents the number of checkpoints performed by
the participants, categorized based on their type of explora-
tion paths. Columns 2 and 3 present instances where partici-
pants kept moving forward in the right path (shown as
green in Fig. 9) or kept deviating (red in Fig. 9). Columns 4
and 5 represent checkpoints performed immediately before
switching from deviation to moving forward (switch color
from red to green or yellow in Fig. 11) and from moving for-
ward to deviation (switch color from green or yellow to red
in Fig. 9), respectively.

We see from Table 5 that of all the checkpoints per-
formed, 67.53 percent (104 checkpoints) were done by par-
ticipants to ensure that their explorations were on the right
path. Participants were also performing checkpoints when
they were stuck to see if what they had done was correct
(18.18 percent, 28 checkpoints). In few cases (5.84 percent, 9
checkpoints), participants performed checkpoints and
immediately changed from moving forward to deviate, mis-
interpreting the information presented to them.

Finally, in 8.44 percent (13 checkpoints) of the cases par-
ticipants were able to get to the right path following a check-
point. Fig. 9 shows that of the 16 instances where
participants moved from deviating (red) to the right path
(green or yellow), 13 of them were after a checkpoint. This
means checkpoints helped participants know that they

were using an incorrect strategy and were able to find a
new strategy. In two of the remaining three instances, par-
ticipants recovered by restarting their exploration.

Finding 8: Dominoes checkpoints were useful in prevent-
ing users from deviating (67.5 percent of steps).

Backtracking

We define backtracking as an action by which participants
change the direction of their exploration. This occurred
when participants performed an undo action or started a
new line of exploration by selecting a different set of tiles
from the library. As an example, P1 when trying to find
dependencies among developers first explored finding the
methods changed by a developer (by [DjM] = [DjC] �
[CjM]). But, she realized that this was not the right approach,
so she backtracked, deleted the tiles on the editor canvas,
and started exploring another path ([DjF] = [DjC] � [CjM] �
[CljM]T � [FjCl]T). She said: “That is not what I want. It is
wrong. I need another dominoes piece [tile]”

Fig. 11 shows the number of backtracks performed by
participants. We follow the same color coding as in Fig. 9,
where green is moving forward, yellow is repeat, and red is
deviating. We see that every participant, except P5, back-
tracked at least once. We also see that scenarios 3 and 4,
which were open-ended, needed a lot more backtracking
than the first two scenarios.

In 14 out of the 15 backtracking instances, participants
reverted from an incorrect path to a correct one (red to green
or yellow). These backtracks were triggered by checkpoints:
13 out of the 15 backtracks. For example, after a checkpoint
in S3, participant P6 realized that he was in the wrong direc-
tion. He backtracked after saying: “That is not what I want. It
is wrong. I need another dominoes piece [tile]”.

Finally, we find backtracking to be helpful in arriving at
the right solution. When we evaluate the incorrect answers
(5 cases), we find that in four out of the five cases partici-
pants did not backtrack (P3 (S3), P5 (S1 and S2), P7 (S2)).

Finding 9: Dominoes backtracking mechanisms allowed
the participants to revert incorrect exploration paths in
93 percent of the times – 80 percent of the users that got
incorrect answers did not backtrack.

3.3 Limitations

Here we discuss the limitations of our study design and of
the tool itself.

Fig. 11. Backtracking and checkpoint. The numbers indicates the rate of pieces / minutes used by the participant.

TABLE 5
Checkpoints Performed by Participants in Their Explorations

Part. Keep
moving
fwd.

Keep
deviating

Change from
moving fwd.
to deviating

Change from
deviating to
moving fwd.

Total

P1 14 1 1 2 18
P2 9 2 1 2 14
P3 9 0 1 0 10
P4 19 1 1 0 21
P5 7 2 1 0 10
P6 14 0 1 2 17
P7 14 11 1 3 29
P8 9 1 0 1 11
P9 9 10 2 3 24

Total 104 28 9 13 154
(67.53%) (18.18%) (5.84%) (8.44%)

DA SILVA JUNIOR ET AL.: DOMINOES: AN INTERACTIVE EXPLORATORY DATA ANALYSIS TOOL FOR SOFTWARE RELATIONSHIPS 389

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

Study Design Limitations. This paper reports an explor-
atory study of how participants used Dominoes when per-
forming a set of data exploration tasks. Such an exploratory
study was needed to first understand whether users under-
stand the Dominoes tile metaphor, and how they perform
explorations. Further studies are needed to evaluate Domi-
noes in comparison to other data exploration tools (e.g.,
Information Fragments [3]).

We stopped recruitment after 9 participants since we
found saturation in participant behaviors, participants were
repeating the exploration paths and the mistakes. Like in
any participant feedback, our exit interviews may be subjec-
tive and include desirability bias, we aimed overcome these
by basing the results mainly on the qualitative analysis of
user actions (and not just their responses to the question-
naire) and maintained rigor in the analysis through negoti-
ated agreement. The inherent nature of an observational
think-aloud study might create additional cognitive load in
participants needing to think aloud [26]. Such limitation can
be removed in future controlled quantitative studies.

Finally, we did not counterbalance the four tasks (scenar-
ios). This was a conscious choice. The scenarioswere designed
to be of increasing complexity, and it was important that par-
ticipants first start their exploration by answering simpler
questions before attempting open-ended explorations.

Tool Limitations. Currently, Dominoes provides seven
basic tiles that link project entities, such as commits and its
changes (method and file level), developer, and related
issues, as well as containment relationships of methods
into classes, files, and packages. Other kinds of data, such
as communication, team organization, and code review
information, are not yet available and would be interesting
(as noted in feedback from P6). The Dominoes architecture
is designed to makes it easy to add tiles for such informa-
tion, by creating a wrapper for the repository containing
this data. Some interactions, such as “drag and drop”,
were different from what participants (P2, P9) expected.
For example, double clicking a tile in the library puts it on
the canvas, and tiles are rearranged in the library window
by dragging; P2 and P9 expected to drag a tile onto the
canvas.

Participants suggested enhancements to the visualiza-
tions that would make it easier to understand or retrieve the
data. Some of the suggestions included a search (P1, P6)
and reordering (P2) functionality for the matrix visualiza-
tion, which can become quite large for tiles (e.g., scenario 3
led to an 8 � 300 matrix). Another recommendation was to
provide tool tips or to annotate the bars (in the bar chart)
with the data, since it was difficult to accurately pin point
the data in a large visualization (lots of bars).

Another feature that could have benefitted participants
was if the visualizations automatically updated reflecting
changes to the derived tiles. Currently, Dominoes requires
explicitly opening a visualization by right clicking on a tile.
This allows multiple visualizations to exist that can be com-
pared side-by-side, but sometimes, participants created too
many visualization and got confused. Additionally, derived
tiles do not retain their history when saved as a tile (in the
library), which might be useful to participants for future
explorations (P7).

Finally there are some questions that are ill-suited to the
matrix approach employed by Dominoes. One example of
such questions are the ones that involve navigating in the
transitive closure of data. For instance, identifying all meth-
ods that could be directly or indirectly affected by a bug in a
specific method cannot be answered using the current
matrix manipulation logic of Dominoes.

4 MEMBER CHECKING: INDUSTRY
PROFESSIONALS’ INTERVIEW

As an additional investigation of how Dominoes can help
professional software developers, we interviewed five soft-
ware professionals. The goal of this study was to determine
the kinds of questions that these software professionals had
to answer in their every day work and how Dominoes could
help answer them.

Participants. We recruited these software professionals by
emailing eleven developers, who had collaborated with one
of the co-authors in industrial research projects. We could
schedule five out of the eleven participants in a 1-week
period. Table 6 shows participants’ details. Participants
(numbered, P11 to P15) all had significant experience in
software development (from 6 to 30 years), had different
occupations (e.g., software development, software engineer-
ing, project leader, and project manager), and worked with
different technologies. All participants had performed some
form of exploratory analysis as part of their work.

Method: The interviews were about one hour long. We
started the session by providing some explanation about our
research and obtaining their consent to record the interview.
We then explained the purpose of Dominoes and the con-
cepts behindmatrix operations; these explanations were part
of a script that the first author read out to ensure consistency
across participants. Next, we gave a hands on demonstration
of Dominoes bywalking the participants through scenarios 3
and 4, described in Section 3.1.1. During this time, partici-
pants were encouraged to ask any questions theymight have
had. After this demonstration, we allowed participants to
“play” with Dominoes if they desired, otherwise, we asked

TABLE 6
Participants’ Profile

Part. Experience Occupation Exploratory Analysis Technologies Used

P11 10 years Project leader Identify developers that changed problematic code and identify
expert developers in the code

Git, Subversion, Track

P12 30 years Soft. eng. Identify students’ profile for merchandising Oracle
P13 13 years Soft. eng. Identify releases and release related information in a project Git, Java, Python
P14 21 years Project manager Identify how developers are organized among repositories Java, .Net, Clearcase, Subversion, Git
P15 6 years Soft. dev. Evaluate students’ profile Subversion, Git

390 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

them to provide us with examples of how they envisioned
using Dominoes in their own projects along with concrete
examples of such usage.

Analysis. The interviews helped uncover 16 distinct
questions that participants said they would use Dominoes
to answer. We categorized these questions into six broad
categories based on the intent of the question. The first
author analyzed the interview transcripts to create these
categories. All the authors then met to discuss these cate-
gories and the placement of the questions in these catego-
ries. Through one round of negotiated agreement (two
categories were similar and were combined into one and
another was dropped), we arrived at the following set of
four categories:

� Locate Who: identify developer(s) with expertise on
different pieces of the code (at different levels of
granularity).

� Locate What: identify details about particular changes
or issues in the project.

� Productivity: identify the amount of work performed
by individuals.

� Team Organization: identify optimum work
responsibilities.

Results. Table 7 presents the questions that our partici-
pants reported they would ask Dominoes when exploring
their project. Four out of five participants (P11-P14) men-
tioned they would appreciate using Dominoes to seamlessly
explore different types of data. A common theme of ques-
tions was to identify which parts of the code were involved
with issues (Q7, Q9). Others included questions about what
was changed in the project (Q6-Q9); sometimes to find out
which parts of the codewas likely to be buggy (Q7, Q9) or for
help in refactoring (Q8). P15 mentioned how Dominoes can
be helpful by recalling an example: “...to identify ancient meth-
ods to perform refactoring. A file can be changed a lot of times but it
does not guarantee all methods were changed... I worked in a three-
year-long project. In a few months before delivering it, I asked all

developers to check all the methods they created but never revised...
it was not possible to do so... we know some were missed”.

Participants wanted to know who had changed what to
figure out task assignments (Q1-Q4) or from whom to seek
help (Q15). Some participants wanted to use Dominoes to
help with their team management: decide which type of
tasks a developer should have (Q16), facilitate communica-
tion in the team (Q15), answer productivity questions of the
team (Q10-Q13), or organize the team to ensure there is
redundancy in expertise on complex parts of the codebase
(Q14): P12 said: “...in case just one developer is working on a
complex system, I would assign someone to work with him to miti-
gate the risk”.

The ability to investigate data at a finer grained level was
appreciated by participants (Q1, Q6). P11 said: “allows fine
granularity... it becomes much easier to identify the exact methods
that have been changed by a developer”.

Additionally, participants mentioned that Dominoes
would be helpful in wrangling large amounts of data (P11,
P13). They appreciated the fact that by using Dominoes
they would not have to export the data into multiple tools
or data format (P12, P14). Participants felt Dominoes made
project exploration much less complex than what they
would need to do in Git (P12, P15), and Dominoes made
data exploration possible for both novices and experts
(P14). Two participants (P11, P15) felt that automation could
help further (P15): “it would be nice to have a feature where
users inform the relationship they desire and Dominoes produces
all possible combinations to reach this target relationship”. In
Section 5, we explore how such an automation feature could
work in Dominoes.

Participants liked the ability to explore relationships
across different repositories (P11-P14). This ability to ask
questions across several repositories allowed them to chain
questions as they understood more about the project (P13):
“...Explore potential developer who creates a bug... combining
commit, issues, and classes tiles I can identify the classes that
have a high amount of modifications for solving a bug. From this,

TABLE 7
Participants’ Questions

Category Question Participant

Type P11 P12 P13 P14 P15

Locate Who 1 Who has changed what at a finer grained lens (method, complex files)? @ @
2 Who has (historical) expertise on parts of code? @
3 Who should edit a (given) code part? @
4 Who should be assigned to an issue? @
5 Who introduced a bug? @ @

Locate What 6 What has changed at a finer grained (method, parts of code base, complex files, across repo)? @ @ @ @
7 Which files has had a lot of change (help find buggy places)? @
8 Which files have become stale (help refactor)? @
9 Which bug is related to which parts of code? @ @ @

Productivity 10 Who is active now? @
11 Who has done what (amount of commits, complex code)? @ @
12 How long it takes someone to finish task? @
13 Who creates buggy code? @

Team organization 14 How well is expertise balanced to mitigate risk of lost expertise because of turnover? @ @
15 Who has expertise to help someone/ facilitate communication? @
16 Who is right to fix bugs versus make new feature implementation? @

DA SILVA JUNIOR ET AL.: DOMINOES: AN INTERACTIVE EXPLORATORY DATA ANALYSIS TOOL FOR SOFTWARE RELATIONSHIPS 391

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

I can then check the developers that changed this class in the
recent past... then I can infer that the one that most changed it
introduced the bug... I can combine pieces to explore developers
that are adding more bugs in the code. Using the information of
commits, I can produce a metric of effectiveness about the changes
performed by a developer”.

Additionally, participants appreciated the ability to
explore the project data via visualizations (P11-P14). P12
said: “biggest problem when using tools for selecting info in a
database is related to visualization. All the time, I needed to export
the resulting data in order to visualize the information”. All par-
ticipants (P11-P15) agreed that using Git to explore their
project is difficult, requiring them to know what informa-
tion they want to process, export/extract the information,
and run SQL queries. P14 said: “...difficult as the data produced
by Git should be imported into another tool in order to understand
how these information connect to each other. Besides that, a query
language would be necessary, which increases even more the com-
plexity of the analysis”. In fact, P13 had built a visualization
to simplify his project exploration. The tool showed which
developers had changed which files and which files were
changed together.

Finally, we investigated possible answers to these ques-
tions using Dominoes. Most of these questions are open-
ended, allowing a multitude of solutions. Table 8 shows one
possibility for answering each question in Dominoes.

In Table 7, question #1 asks for an overview of changes as
well as who performed it. The answer in Table 8 is at a fine
grain (method level). Questions #3 and #4 ask for advice
regarding task distribution, which can be answered by
determining the most appropriate developer, such as the
one who most changed the specified part of the code. Ques-
tion #2 is more specific, as it requires a historical analysis
that can be done by Dominoes API [16] (not available in
GUI). For question #5, one possible answer could be select-
ing the last five days, for instance, and then retrieving the
person who edited the problematic artifact.

Question #6 is like question #1 but viewed from the arti-
fact perspective to identify changes in a selected time frame.
On the other hand, questions #7 and #8 are expected to indi-
cate artifacts with more and fewer modifications, respec-
tively. It can be extracted by counting the number of

commits and sorting the result in descending order, for the
former, or ascending order, for the latter. Question #9 can-
not be answered by Dominoes in its current version, but a
transitive closure operation can handle these questions, as
stated by Kim et al. [27]. We are working on a new version
of Dominoes with such an operation.

Related to productivity, answering question #10 can
be done by counting the number of commits performed
by each developer and sorting the result. By scoping the
time frame, it is possible to select the most recent active
developers for this analysis. Question #11 follows the
same answer of #10, but just counting commits may not
be appropriate, as some commits are more complex than
others. Question #12 can only be answered by counting
the number of commits related to a task, while question
#13 can use the number of commits performed on a tar-
get artifact over a time frame for identifying the devel-
oper that most changed it.

Questions #14 and #15 can be answered by using 3D
Dominoes pieces [16] in order to evaluate the expertise vari-
ation over a time frame. Finally, question #16 requires some
sort of interpretation. To fix a bug, we can check the devel-
oper who has performed most changes in the piece of code
where the bug was found. For implementing new features,
one possibility is to identify the developer with consistent
expertise in this part of code by using 3D Dominoes pieces.

5 EXPLORATION VERSUS RECOMMENDATION

Although we explicitly designed Dominoes to support
exploratory analyses over software repositories, we believe
that users could benefit from additional recommendation
support during exploration (see Section 4). For instance,
Dominoes could ask the users for expected relationship
endpoints and search for all tiles combinations that respect
such endpoints. Let us suppose that a user wants to know
all methods that were changed together with other meth-
ods. The answer clearly has “method” in both endpoints:
[MjM]. A recommendation system could list possible tile
combinations that would satisfy this query, such as: [CljM]T

� [CljM], [CjM]T � [CjM], etc. Then, the user would need to
choose the most appropriate recommendation, which is the
second in this list. This kind of support could be especially
useful for newcomers, to understand possible combinations
of tiles and speed-up the exploration process.

To assess the feasibility and utility of such automated
support, we implemented a Jupyter notebook3 to simulate
the execution of the operations over tiles. This Jupyter note-
book receives the expected endpoints as input. Then, it com-
bines the existing tiles to create derived tiles, using both
transposition and multiplication, recursively. After that, it
filters the results by the desired tile endpoints and sorts the
results in ascending order of the number of operations
used. We used this Jupyter notebook to simulate all four
scenarios discussed in Section 3.1.1. For each scenario, we
provided the expected endpoints and collected the possible
recommendations. Table 9 shows the results.

The first column of Table 9 shows the scenario id. The sec-
ond column shows the expected endpoints, extracted from

TABLE 8
Dominoes Answers for the Questions in Table 7

Question # Answer

#1 [DjM] = [DjC] � [CjM]
#2 Usage of 3D Dominoes pieces [16]
#3 [DjCl] = [DjC] � [CjM] � [CljM]T

#4 Same as #3
#5 [DjF] = [DjC] � [CjF] over a time frame
#6 [CjF] over a time frame
#7 [

P
CjF#]

#8 [
P

CjF"]
#9 Not yet implemented
#10 [

P
DjC#] over a time frame

#11 Same as #10
#12 [DjI] = [DjC] � [IjC]T
#13 Same as #3
#14, #15 Same as #2
#16 Same as #1

3. http://bit.ly/2UYV2EF

392 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

http://bit.ly/2UYV2EF

the scenario description in Section 3.1.1. The third column
shows the number of necessary operations to reach the cor-
rect answer. This number was derived from the correct
answer shown in Section 3.1.1. For instance, the correct
answer for Scenario 1 is [DjD] = [DjC] � [CjM] � ([DjC] �
[CjM])T , which requires one multiplication for the first two
tiles (X = [DjC] � [CjM]), one multiplication for the last two
tiles (Y = [DjC]� [CjM]), one transposition (Z = YT), and one
final multiplication (X � Z). The fourth column shows the
total number of possible answers after applying all combina-
tions of operations listed in the third column. Please notice
that not all theoretical combinations are possible in practice
because, while transposition can always occur, multiplica-
tion can only occur when both tiles have endpoints in com-
mon. For instance, the two operations (multiplication and
transposition) applied over the seven basic tiles would pro-
duce just 21 combinations: the seven original basic tiles, the
seven tiles derived from the transposition of the basic tiles,
and the 7 tiles derived from the multiplication of basic tiles
([FjCl] � [CljM], [CjF] � [FjCl], [PjF] � [FjCl], [DjC] � [CjF],
[IjC] � [CjF], [DjC] � [CjM], [IjC] � [CjM]). When applying
the two operations in an iterative manner over the obtained
tiles, we reach 53, 117, 231, and 450 combinations, respec-
tively for 2, 3, 4, and 5 operations. Finally, the fifth column
indicates the position in which the correct answer appears
among the combinations listed in the fourth column after
sorting all combinations with appropriated endpoints (sec-
ond column) in ascending order of the number of operations.
For instance, from the 231 possible combinations for Scenario
1, after filtering the ones with [DjD] endpoints and sorting
the results in ascending order, the correct answer appears in
the third position.

As shown in Section 3.1.1, the correct answer for Scenario
1 can be reached after applying 4 operations. The total num-
ber of possible tiles after applying 4 operations is 231. How-
ever, when we just consider tiles that start with ’D’ and end
with ’D’, the correct answer can be found in the third posi-
tion: [DjC] � [DjC]T , [DjC] � [CjF] � ([DjC] � [CjF])T , [DjC]
� [CjM] � ([DjC] � [CjM])T . For Scenario 2, out of 450 tiles
generated after 5 operations, the correct answer is listed in
the fifth position, should the user provide a template starting
with ’D’ and ending with ’D’: [DjC] � [DjC]T , [DjC] � [CjF]
� ([DjC] � [CjF])T , [DjC] � [CjM] � ([DjC] � [CjM])T , [DjC]
� [DjC]T � [DjC] � [DjC]T , [DjC] � [IjC]T � [IjC] � [DjC]T .
For Scenarios 3 and 4, the answers, respectively with 3 and 2
operations, would appear in second out of 117 and 54 possi-
ble tiles, should the user inform the expected endpoints:
[DjC] � [CjF] � [FjCl], [DjC] � [CjM] � [CljM]T for Scenario
3 and [CjF]� [FjCl], [CjM]� [CljM]T for Scenario 4.

Although promising, a feature like this is still limited
when composing these tiles. The user would still need to:
(1) know the expected endpoints of the resulting tile, (2)

choose the correct tile from the list of possible solutions, (3)
choose the correct visualisation to interpret the results, and
(4) search for the correct answer in the visualization.
Depending on the results, the user may need to go back to
previous steps and start over. For instance, Scenario 4 also
demands an aggregation over a specific column. Choosing
the correct tile suggested by such a recommendation feature
would be just a starting point for the exploration. Conse-
quently, we see such a recommendation feature as comple-
mentary to the exploration features that are already in-place
in Dominoes.

6 RELATED WORK

While working on a software project, developers tend to ask
a variety of questions, such as “where is this method call-
ed?” [3] or “who modified this class the most?” [28]. Some
of these questions are easy to answer, as they target individ-
ual information and have little or no ambiguity.

On the other hand, some questions such as “what arti-
facts being changed by my co-workers may affect my
work?” or “how can I identify the developers who should
be allocated to a given task?” require more effort to be
mined and answered. In order to answer these questions, it
is necessary to link together different pieces of information,
potentially coming from different repositories [29]. In this
case, it may be necessary to check an issue tracker in order
to verify in which parts of the code someone is working on.
Additionally, it may be necessary to check over communica-
tions from these coworkers.

Sillito et al. [28] conducted two qualitative studies about
developers performing changes tasks from medium to large
projects. One of the studies involved newcomers working
over these tasks while the other involves experienced pro-
grammers. The main focus of their work was to measure
what information developers need while performing the
task and how they achieve this information. The final result
is the categorization of 44 kinds of different questions; the
vast majority of which involves relationships with other
entities in the project.

In the same way, Ko et al. [30] conducted a study with
seventeen developers in order to analyze the information
they sought, the data source used by them, and most impor-
tantly, the barriers that prevent these information to be
acquired. Interestingly, most of the questions types are
related to awareness about artifacts and coworkers. Besides
that, the cost of testing hypothesis and the risk of a false
hypothesis often prevent developers from finding their
answer. In this case, tools that allow fast and easy data
manipulation without requiring so many technical aspects
can reduce these barriers. Dominos goes in this direction by
providing mechanisms to compose and explore these rela-
tionships in a fast way by employing GPU.

Cataldo et al. [1] stands out as they use matrices to process
dependencies among developers based on dependencies
among artifacts. In their approach, both structural and logi-
cal dependencies become Task Dependency (TD) matrices,
and change requests, associating developers to artifacts,
becoming Task Assignment (TA) matrix. These matrices are
used in an equation that indicates coordination requirements
TA � TD � TT

D. Our approach generalizes this idea by

TABLE 9
Tiles Recommendation Statistics

Scenario Endpoints # Operations # Combinations Rank

1 [DjD] 4 231 3
2 [DjD] 5 450 5
3 [DjCl] 3 117 2
4 [CjCl] 2 54 2

DA SILVA JUNIOR ET AL.: DOMINOES: AN INTERACTIVE EXPLORATORY DATA ANALYSIS TOOL FOR SOFTWARE RELATIONSHIPS 393

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

allowing different kinds of exploration over matrices. Our
identification of relationships allows for combining support,
confidence, and lift, to compose the dependency matrix
depending on the required analysis. Moreover, we shift the
perspective from a predefined and offline processing to an
exploratory and online (interactive) processing using the
Dominoes tilemetaphor andGPU processing.

A majority of current Exploratory Data Analysis tools
support exploration via visualizations and/or queries on a
predetermined set of project relationships and predeter-
mined type of data repositories. Voinea and Talea [31] pres-
ent a framework capable of mining software repositories at
coarse grain and presenting an analysis of this data through
different types of visualizations. Most of these visualizations
provide functionalities to sort a set of (predetermined) char-
acteristics (such as developer’s-id or file size) in order to infer
information. In the same way, Metrics Viewer [32] provides
visualization over repository, such as source code changes,
without allowing manipulation of these data. On the other
hand, tools such as Tukan [33], CollabVS [34], and Palant�ır
[35] perform code analysis in order to identify dependencies,
allowing either predefined questions or limiting the amount
of artifacts that can be analyzed in a reasonable amount of
time. In the case of Tesseract [11], for example, the available
relationships are preprocessed and the matrices are fixed at
a coarse grain level ([filejfile], [filejdeveloper], [filejbug],
[bugjdeveloper]), imposing a subset of the data that can be
explored. Tableau [36] is a drag-and-drop application that
generates queries from different pre-selected data sources,
allowing visualization using different built-in chart types.
However, to do this the user needs to use VizQL [37]–a struc-
tured query language–for selecting the data to be combined.
Dominoes on the other hand does not require knowledge of
any particular SQL query language.

Codebook [38] is a framework that mines relationships
from software repositories, building a graph of developers
and artifacts. For instance, such graph can encode the devel-
opers that are the authors of commits and the files changed
by commits. Expert users can build applications that instan-
tiate Codebook to run specific regular expressions over the
graph. End users can use such applications to query Code-
book through the predefined regular expressions according
to specific parameters (e.g., the name of a developer or a file
they want to search for). Dominoes distinguishes from
Codebook in two primary ways. First, Codebook is a frame-
work conceived to be instantiated into applications (e.g.,
Hoozizat [38], WhoseisThat [39], and Deep Intellisense [40])
that focus on providing predefined queries to end users.
Each of these applications focus on specific types of project
information. Dominoes, on the other hand, leverages an
intuitive and a fast interface that allows end users to explore
different project relationships on the fly. Second, although
Codebook was designed to be scalable, its dependence on
compilation of the regular expressions (queries) into state
machines requires almost an hour–a high start-up cost for
exploratory analysis. Dominoes multiplies matrices cells in
parallel over GPU in few seconds for most cases [14].

Information Fragments [3] is a tool that supports querying
information obtained from different sources (e.g., source
code, team, etc.), and is the closest in functionality to Domi-
noes. Each information source, called information fragment,

is represented as a graph of relationships among information
from the respective domain (e.g., method calls, leadership,
etc.). End users can compose new information fragments
(e.g., code ownership) by connecting existing base fragments.
These composed informations are in fact new edges connect-
ing nodes of previously disconnected graphs. The composi-
tion operation relies on id matching to connect nodes from
different graphs. Text matching was also proposed, but not
implemented in the tool yet. Differently from Information
Fragments, that requires composing queries from scratch,
Dominoes allows saving and reusing composed tiles. This not
only enhances the list of available tiles for other users but also
speeds up the answer of new questions. Moreover, Informa-
tion Fragments uses simple hierarchical views to show the
answer of the queries, while Dominoes provide multiple
views for presenting intermediate and final data. Finally,
Dominoes was specifically designed for supporting explor-
atory analysis of large repositories by processing relation-
ships as matrices in GPU. The Information Fragments paper
does not provide performance evaluation; neither does it pro-
vide characterization of the size of the project used in the eval-
uation. We plan to contact the authors to get access to their
tool to perform such a comparative evaluation in the future.

7 CONCLUSION AND FUTURE WORK

In this paper we presented Dominoes, a tool that allows
users to perform interactive exploratory data analysis by
dragging, dropping, and connecting Dominoes tiles, which
represent project entities. Dominoes allows seamless hands-
on data exploration of a software project without requiring
the user to write scripts or queries, or be limited by prede-
fined relationships. Users can explore different project rela-
tionships, backtrack, and save their exploration paths. The
key design decisions behind Dominoes are: (1) the use of a
high-level metaphor for abstracting project relationships
(dominoes tiles), (2) an intuitive mechanism for deriving
additional project relationships (composing dominoes tiles),
and (3) a fast mechanism for performing the matrix transfor-
mations under the hood (via GPU).

We evaluated Dominoes’ usability by having nine partici-
pants complete a set of four tasks, where they explored the
Apache Derby project by creating new derived tiles, explor-
ing different project relationships, and investigating new
perspectives when visualizing these relationships. Partici-
pants were successful in 86.11 percent of their explorations,
and were able to learn the tool quickly. While our study
recruited participants with software engineering experience,
we did not control for repository analysis experience; Only
three of them had such experience (P5, P8, and P9). When
comparing these three participants with the others they took
less time on average (6.34 versus 7.70 minutes). However,
they had more incorrect answers (25 percent versus 8 per-
cent). Further analysis revealed, on average, they did less
checkpoints (15.00 versus 18.16) and performed less back-
tracking (1.33 versus 2.00). So, while they had speed this did
not convert to more accurate answers. Further studies with
different types of target users and other types of software
development projects are needed to generalize our results.

We also presented Dominoes to five professionals and
collected real-world questions that Dominoes would be able

394 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

to support answering. Finally, we experimented with
a promising recommendation feature for Dominoes. A natu-
ral extension of these evaluations is to release Dominoes to
the community in order to get feedback on tool enhance-
ments and a deeper understanding about the exploration
behavior of people exploring their own projects. Finally, the
Dominoes approach can be applied to other domains by
allowing users to extract and cross-link different data ele-
ments, which can then be used to create the Dominoes tiles
(matrices).

ACKNOWLEDGMENTS

We thank the participants of our study. This work is par-
tially funded by CAPES, CNPq, FAPERJ, and NSF grants:
1815486 and 1560526.

REFERENCES

[1] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley,
“Identification of coordination requirements: Implications for
the design of collaboration and awareness tools,” in Proc. 20th
Anniversary Conf. Comput. Supported Cooperative Work, 2006,
pp. 353–362.

[2] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How develop-
ers drive software evolution,” Proc. 8th Int, Workshop Princ. Softw.
Evol., 2005, pp. 113–122.

[3] T. Fritz and G. C. Murphy, “Using information fragments to
answer the questions developers ask,” in Proc. 32nd ACM/IEEE
Int. Conf. Softw. Eng. - Vol. 1, 2010, pp. 175–184.

[4] J. D. Herbsleb and R. E. Grinter, “Splitting the organization and
integrating the code: Conway’s law revisited,” Proc. 21st Int. Conf.
Softw. Eng., 1999, pp. 85–95.

[5] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical
congruence: A framework for assessing the impact of technical
and work dependencies on software development productivity,”
in Proc. 2nd ACM-IEEE Int. Symp. Empir. Softw. Eng. Meas., 2008,
pp. 2–11.

[6] S. Mcintosh, B. Adams, M. Nagappan, and A. E. Hassan, “Mining
co-change information to understand when build changes are nec-
essary,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2014,
pp. 241–250.

[7] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data scien-
tists in software teams: State of the art and challenges,” IEEE
Trans. Softw. Eng., vol. 44, no. 11, pp. 1024–1038, Nov. 2018.

[8] A. J. Ko and B. A. Myers, “Debugging reinvented: Asking and
answering why and why not questions about program behavior,”
in Proc. 30th Int. Conf. Softw. Eng., 2008, pp. 301–310.

[9] T. Green, “Programming languages as information structures,”
Psychology of Programming. Cambridge, MA, USA: Academic
Press, 1990, pp. 118–137.

[10] S. Minto and G. C. Murphy, “Recommending emergent teams,” in
Proc. 4th Int. Workshop Mining Softw. Repositories, 2007, Art. no. 5.

[11] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb,
“Tesseract: Interactive visual exploration of socio-technical rela-
tionships in software development,” inProc. IEEE 31st Int. Conf.
Softw. Eng., 2009, pp. 23–33.

[12] C. Kiefer, A. Bernstein, and J. Tappolet, “Mining software reposi-
tories with iSPAROL and a software evolution ontology,” in Proc.
4th Int. Workshop Mining Softw. Repositories, 2007, Art. no. 10.

[13] S. Paul and A. Prakash, “A query algebra for program databases,”
IEEE Trans. Softw. Eng., vol. 22, no. 3, pp. 202–217, Mar. 1996.

[14] J. R. da Silva Junior, E. Clua, L. Murta, and A. Sarma, “Exploratory
data analysis of software repositories via gpu processing,” in Proc.
Int. Conf. Softw. Eng. Knowl. Eng., 2014, pp. 495–500.

[15] J. R. da Silva Junior, E. Clua, L. Murta, and A. Sarma, “Multi-
perspective exploratory analysis of software development data,”
Int. J. Softw. Eng. Knowl. Eng., vol. 25, no. 1, pp. 51–68, 2015.

[16] J. R. da Silva Junior, E. Clua, L. Murta, and A. Sarma, “Niche
versus breadth: Calculating expertise over time through a fine-
grained analysis,” in Proc. Int. Conf. Softw. Anal. Evol. Reengineer-
ing, 2015, pp. 409–418.

[17] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” in Proc. 6th Conf. Symp. Opearting Syst. Des.
Implementation - Vol. 6, 2004, Art. no. 10.

[18] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake,
GPU-Accelerated Database Systems: Survey and Open Challenges.
Berlin, Germany: Springer, 2014, pp. 1–35.

[19] D. Steward, “The design structure system: A method for manag-
ing the design of complex systems,” IEEE Trans. Eng. Manage.,
vol. EM-28, no. 3, pp. 71–74, Aug. 1981.

[20] P. Prabhu, et al., “A survey of the practice of computational scien-
ce,” Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2011, Art. no. 19.

[21] M. E. Conway, “How do committees invent,” Datamation, vol. 14,
no. 4, pp. 28–31, 1968.

[22] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in
end-user programming systems,” in Proc. IEEE Symp. Vis. Lang.
Hum. Centric Comput., 2004, pp. 199–206.

[23] S. K. Kuttal, A. Sarma, and G. Rothermel, “On the benefits of pro-
viding versioning support for end users: An empirical study,”
ACM Trans. Comput.-Hum. Interact., vol. 21, no. 2, pp. 9:1–9:43,
Feb. 2014.

[24] H. Chan, K. Siau, and K.-K. Wei, “The effect of data model, system
and task characteristics on user query performance: An empirical
study,” SIGMIS Database, vol. 29, no. 1, pp. 31–49, 1997.

[25] S. S. Ragavan, S. K. Kuttal, C. Hill, A. Sarma, D. Piorkowski, and
M. Burnett, “Foraging among an overabundance of similar var-
iants,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2016,
pp. 3509–3521.

[26] S. Xu and V. Rajlich, “Dialog-based protocol: An empirical
research method for cognitive activities in software engineering,”
in Proc. Int. Symp. Empir. Softw. Eng., 2005, Art. no. 10.

[27] S. Kim, T. Zimmermann, K. Pan, and E. J. Jr., Whitehead,
“Automatic identification of bug-introducing changes,” in Proc.
21st IEEE/ACM Int. Conf. Autom. Softw. Eng., 2006, pp. 81–90.

[28] J. Sillito, G. C. Murphy, and K. De Volder, “Questions pro-
grammers ask during software evolution tasks,” in Proc. 14th
ACM SIGSOFT Int. Symp. Foundations Softw. Eng., 2006, pp. 23–34.

[29] A. E. Hassan, “The road ahead for mining software repositories,”
in Proc. Front. Softw. Maintenance, 2008, pp. 48–57.

[30] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collo-
cated software development teams,” in Proc. 29th Int. Conf. Softw.
Eng., 2007, pp. 344–353.

[31] L. Voinea andA. Telea, “Visual querying and analysis of large soft-
ware repositories,” Empir. Softw. Eng., vol. 14, no. 3, pp. 316–340,
Jun. 2009.

[32] S. Yasutaka, S. Matsumoto, S. Saiki, and M. Nakamura,
“Visualizing software metrics with service-oriented mining soft-
ware repository for reviewing personal process,” in Proc. 14th
ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distrib.
Comput., 2013, pp. 549–554.

[33] T. Sch€ummer and J. M. Haake, “Supporting distributed software
development bymodes of collaboration,” in Proc. 7th Eur. Conf. Com-
put. Supported CooperativeWork, 2001, ch. Supporting, pp. 79–98.

[34] P. Dewan and R. Hegde, “Semi-synchronous conflict detection
and resolution in asynchronous software development,” Proc.
Eur. Conf. Comput.-Supported Cooperative Work, 2007, pp. 159–178.

[35] A. Sarma and A. van der Hoek, “Palantir: Coordinating distrib-
uted workspaces,” in Proc. 26th Annu. Int. Comput. Softw. Appl.,
2002, pp. 1093–1097.

[36] P. Terlecki, F. Xu, M. Shaw, V. Kim, and R. Wesley, “On improv-
ing user response times in tableau,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2015, pp. 1695–1706.

[37] K. Morton, R. Bunker, J. Mackinlay, R. Morton, and C. Stolte,
“Dynamic workload driven data integration in tableau,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2012, pp. 807–816.

[38] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: Discover-
ing and exploiting relationships in software repositories,” Proc.
ACM/IEEE 32nd Int. Conf. Softw. Eng., 2010, pp. 125–134.

[39] A. Begel, K. Y. Phang, and T. Zimmermann, “WhoselsThat: Find-
ing software engineers with codebook,” Proc. 18th ACM SIGSOFT
Int. Symp. Foundations Softw. Eng., 2010, pp. 381–382.

[40] R. Holmes and A. Begel, “Deep intellisense: A tool for rehydrating
evaporated information,” in Proc. Int. Working Conf. Mining Softw.
Repositories, 2008, pp. 23–26.

DA SILVA JUNIOR ET AL.: DOMINOES: AN INTERACTIVE EXPLORATORY DATA ANALYSIS TOOL FOR SOFTWARE RELATIONSHIPS 395

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

Jose Ricardo da Silva Junior received the BS
degree in computer science from the Universi-
dade Estacio de Sa, in 2005, and the PhD degree
in computer science from the Universidade
Federal Fluminense (UFF), in 2015. He is a pro-
fessor with Instituto Federal do Rio de Janeiro..
His research interest includes digital games,
virtual reality, fluid simulation in real time, and
repository data analysis. During his fellowship at
the University of Nebraska, he started to develop
Dominoes with professor Anita Sarma. He has

experience in computer science with emphasis in GPGPUs, HPC, simu-
lation, and optimization.

Daniel Prett Campagna received the degree in
information technology technician, from Instituto
Federal do Esp�ırito Santo (IFES), in 2013, and
the BS degree in computer science from UFF,
in 2019, he is currently working toward the gradu-
ate degree in computer science, at the Univ-
ersidade Federal Fluminense (UFF). He started
his research career, in 2014, working with data
analytics over configuration management reposi-
tories. Afterwards, he received a CNPq scientific
initiation grant, 2016 to work with data analytics

over undergraduate student transcripts. His research interests area is in
systems and information engineering.

Esteban W. Gonzalez Clua is a professor with
Universidade Federal Fluminense and coordina-
tor of UFF Medialab. He was nominated young
scientist of the State of Rio, in 2009 and 2013,
and in 2015 received the nomination of CUDA fel-
low. His main research and development area
are digital games, virtual reality, GPUs, and visu-
alization. He is today the coordinator of the NVI-
DIA Center of Excellence, that is located at the
CS Institute of UFF.

Anita Sarma received the PhD degree in com-
puter science from the University of California,
Irvine. He is an associate professor with the
School of Electrical Engineering and Computer
Science, at Oregon State University. Her research
interests lie primarily in the intersection of soft-
ware engineering and computer-supported coop-
erative work, and focusing on understanding and
supporting coordination as an interplay of people
and technology. She has more than 100 papers in
journals and conferences. Her work has been rec-

ognized by an NSF CAREER Award as well as several best paper
awards.

Leonardo Gresta Paulino Murta received the
BS degree in informatics from IM/UFRJ, in 1999,
the MS degree in systems engineering, in 2002,
and the PhD degree in computer science, both
from COPPE/UFRJ. He is an associate professor
with the Computing Institute of Universidade Fed-
eral Fluminense (UFF). He has published more
tahn 150 papers in journals and conferences and
received two ACMSIGSOFT Distinguished Paper
Award at ASE 2006 and MSR 2019. His current
research interests include configuration manage-
ment, software evolution, and provenance.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

396 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:43:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

