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ABSTRACT
Software entropy impacts the overall quality of software systems.
High entropy hinders developers from understanding the purpose
of a piece of code and can cause developers to make sub-optimal
changes and introduce bugs. Researchers have used entropy scores
to measure the naturalness of code. However, thus far, no one
has investigated how entropy evolves in real-life software over
time and how that relates to software evolution. We perform a
large scale study of 158 open-source Java projects and find that in
general, entropy shows an increasing trend among the open-source
projects.We also find that on averageweekwise entropy of a project
has a moderate correlation with project metrics (number of active
contributors per week, total methods per week, and total files per
week) used to investigate project evolution. Our findings contribute
to understanding the evolution of software entropy, which hint
towards the need for tools to provide real-time entropy scores to
the developers to help them organize the code.

CCS CONCEPTS

• Software and its engineering → Software reliability; Software
maintenance tools; Software design tradeoffs.
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1 INTRODUCTION
During the lifetime, software systems change for various reasons, 
such as adding new features, fixing bugs, or refactoring. Due to time 
constraints, limited resources, and the lack of regular maintenance, 
these changes could deteriorate the structure of the software system 
from its original state, thus increase the source code complexity and, 
in general, make the system more challenging to understand and 
maintain in the future. Researchers have used entropy to quantify 
complexity and disorganization [6, 14]. As high entropy makes the 
code difficult to understand, it makes the code more bug-prone.

Hellendoorn et al. [15] observed that code quality is also asso-
ciated with how developers write code. Programmers tend to be
highly repetitive and predictable while developing real-world soft-
ware [12]. Hindle et al. were the first to capture the repetitiveness
in a statistical language model [16]. They called this property the
naturalness of code and measured it by entropy. If a code snippet
has high entropy, that means the code is drifting from its natural
state. Previous research shows that high entropic code is associated
with future bugs [24] and design degradation [10]. Ray et al. [24]
investigated if there is any correlation between the buggy code
and entropy. They observed that buggy codes are, in general, less
natural, i.e., they have higher entropy than non-buggy code. Chatzi-
georgiou et al. showed that higher entropy also impacts the design
quality of a software system [10].

Previous research has investigated the impact of entropy on de-
sign quality as well as code quality. However, the overall situation of
software entropy in real-life software has not been investigated yet.
This study aims to shed light on how entropy evolves as software
ages and the relationship between entropy evolution and project
evolution in terms of the number of contributors and number of
methods and files. More specifically, we try to answer the following
research questions:
RQ1: How entropy evolves over time in OSS projects?
RQ2: What is the correlation between entropy and project evolu-

tion in terms of project size and the number of contributors?
To answer our research questions, we conducted a large scale

empirical study. We sampled 158 projects from GitHub [13] and
calculated the week wise entropy for each project to investigate the
evolution of entropy across OSS projects over 330 weeks. We also
collected project metrics for each week for each project. Further-
more, we investigate the association between entropy and other
project metrics by performing a cross-correlation as all of our data
is time-series data.

The paper is structured as follows, Section 2 presents our method-
ology, the demographics of our corpus, data collection, and analysis
process. In Section 3, we present our findings. Section 4 discusses
the results and outlines implications for developers and researchers.
Section 6 provide a review of prior research efforts. Section 7 con-
cludes with a summary of the key findings and future work.
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2 METHODOLOGY
The goal of this empirical study is to understand how entropy in OSS
projects evolves and the relationship between entropy evolution
and project evolution. For this study, we create a corpus of 158
open source projects. In the following subsections, we describe the
pipeline we followed to collect, process, and analyze the data.

2.1 Project Selection Criteria
To make sure our findings would be representative of the code
developed in the real world, we selected active OSS Java projects
from GitHub. We selected Java projects because Java is one of
the most popular languages [27]. We adopted the initial project
selection criteria from the study by Ahmed et al. [5]– searching
and selecting initial project, project size, and the number of files in
a project. Then we added additional criteria as discussed next for
project selection.
We start by randomly selecting 900 projects by searching for

java projects in the GitHub search engine. Next, to make sure the
projects in our corpus is representative of real-world projects and
not throw-away or class projects, we followed the guidelines by
Kalliamvakou et al. [19]. Furthermore, following the guidelines, we
eliminated the repositories that are not “actual" projects, have very
few commits, are inactive, are not related to software development,
or are personal projects. This left us with 500 projects. Then we
selected only the projects that meet the following criteria,
• Project size (Must have more than ten files and 500 lines of code).
• Project age (More than ten weeks).
• Commit history (More than ten commits).
This resulted in our corpus containing 158 projects. Table 1 pro-

vides a summary of our selected projects.

Table 1: Project Statistics

Dimension Max Min Average Median Std dev

Line count 804,658 686 34,582.51 11,188 83,536.64
File count 1,693 11 165.4845 87 253.5198
Total
Commits 6,256 11 485.2981 183 847.7926

# Developers 157 1 19.37267 9 26.67907
Duration
(weeks) 782 10 244 235 168.1799

2.1.1 Unit of measure selection. To investigate how entropy in OSS
projects evolve, we could use different ways of partitioning time.
Izurieta et al. [17, 18] have used releases as the unit of time, where
others have used individual commits, or discrete-time units (years,
months, weeks, days) [5, 21]. As individual commits would be too
fine-grained for our purpose, we selected the week as our unit of
measure similar to Ahmed et al. [5]. Because it gives us enough
detailed insight into the evolution of projects. We then checked
the distribution of commits across the history of the projects and
found that the majority (90%) of the projects had an active history
of 330 weeks or less. We cut off our analysis at 330 weeks in order
to prevent extremely long-lived projects from skewing the results.

2.2 Measuring Entropy
For our study we calculate week wise total entropy for each project.
To get the total entropy, first we calculate the entropy for each
java source file using Python’s Entropy library [1]. The library
uses Shannon’s entropy [2]. Other researchers also used Shannon’s
entropy [8] 𝐻 (𝑋 ), which is calculated using the following formula:

𝐻 (𝑋 ) =
𝑛∑
𝑖=1

𝑃 (𝑥𝑖 ) log2 𝑃 (𝑥𝑖 ) (1)

In Equation 1, 𝑋 is a file, in our case java source file. And 𝑥𝑖 is
a term (in our case a token in a java method) in 𝑋 . 𝑃 (𝑥𝑖 ) is the
probability of a change occurring in a file. 𝑛 is the total number of
methods in each java source files. We will get a maximum entropy
when all methods have the same probability of having a change:
𝑃 (𝑥𝑖 ) = 1/,∀𝑖 = 1, 2, . . . , 𝑛. We will get minimum entropy if for
a method 𝑖 , 𝑃 (𝑥𝑖 ) = 1, and for all other methods, other than 𝑖 ,
𝑃 (𝑥 𝑗 ) = 0,∀𝑗 ≠ 𝑖 .

After collecting entropy for each java file for each week, we sum
up the entropy scores of all java files in a project to get week wise
total entropy for that project.

2.3 Collecting Project Metrics
To answer our second research question, we collected different
project relatedmetrics to investigate the correlation between project
entropy and project evolution. Table 2 lists the metrics we collected
for this purpose.
Table 2: Project metrics used for investigating project’s evo-
lution.

Metric Description

Total methods
per week

Week wise number of unique
methods for each project.

Total contributors
per week

Week wise number of unique
contributors for each project.

Total files
per week

Week wise number of unique
files for each projects

After collecting total entropy for each project, we collected the
above-mentioned project metrics (Table 2) from our data set. We use
Understand [3] to collect the number of files and number of methods
for each week, for each project. We collect the number of unique
contributors per week from the project repository by counting the
number of developers who made commits in the codebase in a
week.

2.4 Data Analysis
We calculated the total entropy and other project metrics (men-
tioned in table 2) for each project over 330 weeks. To compare
these time series, first, we normalized the data since the number
of metrics will vary according to the size of the development team
and project. There are many ways of normalization, and the most
commonly used one is dividing the data by the lines of code. Since
the aim of or study is to identify general trends across projects, not
to look at differences between them, we normalized all the week
wise collected metrics using the feature scaling [7], which gives a
score between 0 and 1 (Equation 2).
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Rescaled value =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥 (𝑥) −𝑚𝑖𝑛(𝑥) (2)

Where,
x = each data point.
min(x) = The minimum among all the data points.
max(x) = The maximum among all the data points.
One of our goals is to identify the correlation between total

entropy per week and the other project-related metrics per week.
We calculate the cross-correlations between entropy per week, and
total methods per week, total contributors per week and total files
per week individually for each project [22]. As the first step of
time series analysis, we start by checking if there are any visible
trends. If a time series exhibits a visible trend, we need to remove
the trend before further analysis. This process is called detrending.
We applied the first differencing method to detrend time series [22],
and after that, we calculate the cross-correlation.

3 RESULTS
In the following sections, We structure our study findings based on
our research questions.

3.1 How entropy evolve over time
To answer our first research question, we start by looking into the
general trend of average entropy across all projects. Figure 1 shows
the increasing trend of the average entropy across all projects.

Figure 1: Week-wise average entropy for the projects.

We also wanted to check whether this same trend holds for all
projects. When we looked into each of the projects individually,
four different trends emerged. The four categories are:
Cat 1: Projects start with low entropy and increase over time.
Cat 2: Projects start with low entropy and remain low over time.
Cat 3: Projects start with high entropy and increase even more

over time.
Cat 4: Projects start with high entropy and decrease over time.

Figure 2 presents examples of these trends using specific projects
from our corpus. Category 1 includes projects that start with low en-
tropy and increase as the project matures, manifests in “artifactory-
client-java" project. Category 2 includes the projects that have a con-
stant low entropy trend over the time; “jitescript" is an exemplar of
this trend. Category 3 includes projects that start with high entropy
and increase over time, as seen in the project “gelfj". Furthermore,
category 4 includes the project that starts with a high entropy but
decreases over time, as seen in the project “jmimemagic". Table 3
shows the percentage of projects in each entropy trend category
in our corpus. We also check if these trends are statistically sig-
nificant or not and found that 76% of all projects have statistically
significant trends.
Table 3: Number of projects in each entropy trend category

General Trend Number of projects(%)

Cat 1 69.62%
Cat 2 2.53%
Cat 3 15.82%
Cat 4 12.03%�



�
	Observation 1: Different types of entropy trends exist, how-

ever on an average entropy increases over time.

3.2 Association between entropy and other
project metrics

To answer our second research question, we investigate the cor-
relation between entropy and other project metrics. As entropy is
related to source code, we picked the project metrics that are also
related to source code, total methods, total files, and total contribu-
tors.

We start by looking into the general trend of the average number
ofmethods, files, and contributors across all projects. Figure 3 shows
a increasing trend for each of the project metrics across all projects.
Since entropy per week, methods per week, contributors per

week, and total files per week all are time series data; a time series
analysis is required to identify the correlation between them, which
is called cross-correlation. We do time series analysis between
entropy and each metrics(mentioned in table 2.3) individually for
each project. Time series analysis requires a pre-processing step
before doing the actual correlation analysis [22]. Due to space
limitations, we report the results after each pre-processing step in
the companion website[20].
Next, we calculate the correlation between each pair of the fol-

lowing time series data, entropy and total methods, entropy and
total developers and entropy, and total files.

Figure 4 shows the result of this step for each pair as an example.
From the figure, we see that the highest correlation value between
entropy and method for “argparse4j" project is 0.58 (shown by the
circled vertical line in (a) at a lag of 7. Similarly, (b) in figure 4 shows
the correlation between entropy and developer with the highest
correlation value of 0.56 for the project “clj-ds" and (c) shows and the
correlation between entropy and total files for project “cloudhopper-
smpp" with the highest correlation value of 0.47 at lag 6. Table 4
shows the statistics of the cross-correlation values with the average
lags for each pair of time series across 158 projects.
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Figure 2: Week wise project’s entropy trend.

Figure 3: Week-wise average for each metrics across all
projects.

Next, we calculate the significance of the correlation for each
project for all three pairs. A correlation is significant when the
absolute value is greater than, 2√

𝑛−|𝑘 |
, where 𝑛 is the number of

observations and 𝑘 is the lag [4]. We found that 150 out of 158
projects have ave statistically significant cross-correlation between
entropy and number of methods. For the pair entropy and devel-
opers, we found that 135 projects have a statistically significant
correlation, and between entropy and total files, 143 projects have

Table 4: Distribution of the correlation value of each pair of
time series.

Maximum Minimum Median Avg lags

Entropy and
Methods 0.94 0.067 0.45 7.48

Entropy and
Developers 0.94 0.082 0.36 10.51

Entropy and
Files 0.96 0.07 0.35 7.5

a statistically significant correlation. We also looked into the lags
between the pair of time series. The fourth column of the table 4
shows the average lags for each paper of time series. Due to space
limitations, we report the plots for each paper, for each of the 158
projects in the companion website [20].�



�
	Observation 2: Entropy is moderately correlated with other

project metrics.

4 DISCUSSION
From our analysis, we found that the overall entropy scores increase
over the life of OSS projects ( Figure 1). One of the reasons behind
this increasing trend could be the practice of software developers
implementing quick fixes with immature design solutions instead
of the optimal solution due to the time constraints. Over time,
these bad design solutions build-up, and software design degrades,
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Figure 4: Cross correlation values of two time series

and entropy (which is a measurement of software degradation [6])
increases.
However, when we investigate the entropy trend for each of

the projects over 330 weeks, we found four distinct categories of
trends, as mentioned in section 3.1. From our analysis, we found
that 76% of the projects’ trends are statistically significant. Among
these four categories, category 2 and category 4 was showing a
low and decrease entropy respectively over time. Though these
categories have a small number of projects (See table 3), we decided
to manually check some of them to find out if there is any specific
practice that helping these projects to maintain or decrease the
entropy of their project. We selected one project from category
2 and 3 projects from category 4 and went through the GitHub
pages for these projects. For all five projects, we noticed that the
instructions for contributors are well defined. These projects are
not only provided instructions about using the software but also
provided specific information to contributors regarding the struc-
ture of the codebase, which package contains important classes,
preferred development tools, testing instructions on how to format
the code, specific coding style, etc. These projects also have spe-
cific instructions on where to report a bug, if they are using any
issue tracking system or not. One of the projects named “mapdb"
has a section called current news, where the project highlights the

ongoing works. Most of these things are missing from the projects
with an increasing entropy trend. More research is needed before
drawing any guidelines that could help the OSS projects to keep low
entropy as we only looked into the GitHub pages for five projects.
Next, we looked at the correlation between entropy and other

project metrics in a time series data. We found that, on average,
entropy moderately correlates with total methods, files, and con-
tributors. As contributors are associated with entropy, it will be
interesting to investigate how they contribute in increasing entropy,
is it their lack of knowledge of software entropy or lack of tool
support or lack of knowledge on the codebase, etc. Further research
is needed to answer these questions.

Previous research showed that entropy is correlatedwith bugs [14,
24] and fail to maintain low software entropy will degrade the over-
all software quality. One of the possible ways to decrease software
entropy could be a regular discussion on software design and keep
the design document updated at all times. However, for OSS projects,
this step will be very hard as developers of OSS projects are geo-
graphically distributed, and for it’s voluntary characteristics, it is
scarce for an OSS project to have updated design documents or in
some cases, design documents.

To the best of our knowledge, no popular IDEs report on entropy.
As monitoring entropy is essential for projects, developers need a
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tool whichwill monitor entropy of their working source code in real-
time and provide developers information about current entropy
score and the links between the working class/method to other
classes/methods.

5 THREATS TO VALIDITY
Our findings may be subject to the concerns that we list below.
We have taken all possible steps to neutralize the impacts of these
possible threats, but some could not be mitigated, and it is possible
that our mitigation strategies may not have been sufficient.

All the projects in our corpus have been collected from a single
source, GitHub. Since we used only GitHub, our findings may be
limited to open source projects from GitHub. However, we believe
that a large number of projects sampled more than adequately
addresses this concern.
All our subject projects are written in Java, but entropy is not

specific to Java. Any programs written in a programming language
will be prone to a high entropic situation.

Our set of project metrics are only related to source code and
developers who write the code. We selected these metrics to see the
correlation between entropy and project evolution in terms of its
size and number of contributors. However, we can not guarantee
that our set of metrics is exhaustive.

We selected the week as our unit of measure for this study, where
previous research used different ways of partitioning time (releases,
commits, months, year, etc.). However, as our goal was to iden-
tify general trends of entropy across projects, week as the unit
of measure gives us enough detailed insight into the evolution of
projects.

6 RELATEDWORK
Entropy is a metric used to measure the naturalness of code. Bianchi
et al. [6] have initially introduced software entropy. It represents
an overall measure of the degree of quality degradation induced by
maintenance interventions, which tend to make code increasingly
"chaotic." Tan and Mookerjee [26] analyze the effect of software
entropy onmaintenance costs on a sample of closed source software
projects.
Olague et al. [23] used entropy as one of the metrics to explain

the changes that a class undergoes between versions of an object-
oriented program. According to the study, high entropic classes
tend to change more than classes with lower entropy. Yuet al. [28]
combined entropy with component-dependency graphs to measure
component cohesion. Entropy was also used by Snider [25] in an
empirical study to measure the structural quality of C code.

Chatzigeorgiou et al. [10] proposed entropy is as a design quality
metric for object-oriented programs. The difference between the
entropy of the two systems provides insight into the quality of the
design in terms of how flexible it has been during the enhancement
of its functionality.
Entropy has also been used for bug prediction. In a study, Ray

et al. [24] found a correlation between buggy code and entropy.
According to their study, buggy code has higher entropy than non-
buggy code. Hassan et al. [14] compared the entropy with the num-
ber of changes and the number of previous bugs in a bug prediction
model and found that entropy is a better predictor. D’Ambros et

al. [11] extended Hassan’s [14] work and found that source code
metrics better describe the entropy of changes. Canfora et al. [8]
found that the change entropy decreases after any refactoring of
the code. Chakraborty et al. [9] used entropy score from statistical
language models and used it for spectrum-based bug localization
(SBBL). They also found a significant improvement compared to
standard SBBL. In a recent study by Zhang [29], they used cross-
entropy with traditional metric suites in a defect prediction model
and found that the performance of prediction models is improved
by an average of 2.8% in F1-score.
Previous studies have investigated entropy from different per-

spectives. However, to the best of our knowledge, no studies have
investigated the evolution of entropy in OSS projects, and it’s rela-
tionship with project evolution.

7 CONCLUSION
In this study, we aimed to understand how entropy evolves in OSS
projects over time. We study the history of 158 open source projects
and found strong evidence that though different types of entropy
trends exist, however on average, entropy increases over time. In
our corpus, we identified four different entropy trends.

In our study, we also investigate the correlation between entropy
evolution and project evolution (in terms of size and number of
contributors). To find the correlation between entropy and other
project metrics, we conducted cross-correlation analysis as all the
data in our corpus are time series. From this analysis, we found
that entropy has a moderate correlation with all the project met-
rics, methods, contributors, and files (see table 4). In our manual
inspection of the projects that show a decreasing trend in entropy
evolution, we found that the GitHub page of these projects is well
documented for not only the user but also for the contributors.
Our work showcases that further research is needed to under-

stand which activities or practices by the project community could
help to maintain low entropy over time. Also, the researcher com-
munity should try to come up with tools to help the projects to
manage the chaos that high entropic code makes over time.
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