

AN ABSTRACT OF THE THESIS OF

Marjan Adeli for the degree of Master of Science in Computer Science presented on

March 19, 2020.

Title: Facilitating Code Comprehension by Annotations in Canvas-Based IDE

Abstract approved:

Anita Sarma

Developers spend a considerable amount of time comprehending code and build-
ing accurate mental models of the code. Understanding the relationships between
software features within IDEs is difficult, with information split across different vi-
sual hierarchies making navigation cumbersome. Canvas-based IDEs mitigate some
of the navigation costs by allowing relevant information to be presented in groups.
However, these groups have no explicit way of capturing and sharing the meaning
of different spatial layouts. In this thesis, we present annotations in a canvas-based
IDE called Synectic to address this concern. Synectic allows users to arrange relevant
information in groups, attach meaning to the arrangement, and externalize thoughts
and relationships between artifacts through annotations. To study the effects of these
annotations on comprehension, we conducted a user study of newcomers performing
code comprehension tasks comparing Synectic and Eclipse. The results show anno-
tations in Synectic increase the developer’s accuracy, while reducing cognitive load

during newcomer comprehension tasks.

©Copyright by Marjan Adeli
March 19, 2020
All Rights Reserved

Facilitating Code Comprehension by Annotations in Canvas-Based
IDE

by

Marjan Adeli

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

Presented March 19, 2020
Commencement June 2020

Master of Science thesis of Marjan Adeli presented on March 19, 2020.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to
any reader upon request.

Marjan Adeli, Author

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my advisor, Dr. Anita Sarma, without
whose constant guidance and support I would not have been able to achieve this. 1
am also indebted to Dr. Amir Nayyeri for his support throughout my early graduate
years, and through many tough times. I would also like to extend my gratitude to
my committee members Dr. Rakesh Bobba and Dr. Leonard Coop.

A very special gratitude goes out to my team members who I worked closely with.
Thank you Souti Chattopadhyay and Nicholas Matthew Nelson.

I also express my gratitude to my family and friends for their understanding and
encouragement throughout my years of study.

Finally, I appreciate the National Science Foundation for partially supporting

this project under the NSF Cooperative Agreement No. 1560526.

TABLE OF CONTENTS

Page

[I_Introductionl. 1
2 Background| o 5
[2.1 Information Foraging Theory|)
[2.2 Code Comprehension Questions| 6
2.3 Alternative user interfaces in IDEsl00 7

[3 Annotations in Synectic|o 10
[3.1 Support for Foragingl 11
[3.2 Support for Understanding| 12
[3.3 Support for Maintaining|o 14

[4 Study Design| 16
[4.1 Participants and Treatments:| 16
[4.2 Project and Tasks:| 18
4.3 Measurements and Constructs:. 20
B Resultd. 23
[b.1 RQIL: Accuracy| 23
(.2 RQ2: Time| 25
.3 RQJ3: Cognitive Load| 25
[b.4 RQ4: Usability] 26
6 Discussion| 28
[6.1 Using [F'T to understand navigation and foraging behavior|. 28
[6.1.1 Foraging in the document| 29

[6.1.2 Foraging across code and document| 31

[6.2 Using Sillito’s four stages of questions to understand code comprehen- |

[sion behavior] 34
[6.2.1 Finding an initial focus point|. L. 35

[6.2.2 Building on those points| 39

[6.2.3 Understanding concepts between related entities| 40

[6.2.4 Questions over groups of related entities] 40

[6.3 Threats to Validity| 42

TABLE OF CONTENTS (Continued)

LIST OF FIGURES

Figure

2.1 An example of two information patches

[2.2 An overview of four categories of code comprehension questions|

[3.1 Synectic intertacelo

[b.1 Boxplots of accuracy scores|

[5.2 Boxplots of time to completion|]

(.3 Boxplots of cognitive load|

[>.4 Boxplot of system usability scale]

[6.1 Synectic IDE, project canvas|.

(6.2 Synectic IDE, Product group|

[6.3 Synectic IDE, Product group with an opened web-browser card. |. . .

Page

© oo N O

38

LIST OF TABLES

Table Page
[4.1 Study Participant Demographics|. 17
M2 Taskd. 19

Chapter 1: Introduction

Code comprehension comprises a large portion of developers activities. For example,
developers were found to spend 58% of their effort on code comprehension [44]. The
effort to comprehend code is especially higher in large software projects [I1]. To
help with comprehension, researchers have conducted several studies of developers’
process of code comprehension [37, [16, B]. For example, Sillito et al. [37] identified
four categories of questions developers ask during maintenance tasks. These cate-
gories represent a model for understanding how developers explore and understand
code and highlight the process of finding a focus point, expanding understanding
around that point, and contextualizing that newly discovered knowledge within the
larger codebase. Throughout each of these categories of questions, developers must
“forage” for relevant information in order to build their mental model of the system.
Prior research has shown that foraging accounts for 35% of the developer’s time
during maintenance tasks [20} §].

Moreover, developers face tremendous barriers while foraging for information.
One study found that 50% of the navigation yielded less information than devel-
opers expected and 40% of navigation required more effort than the developer pre-
dicted [30]. The cost of foraging would likely be considerably higher for newcomers to
a project, who haven’t yet formed a mental model of the feature set and the different
relationship between those features.

In particular, developers have difficulty understanding the relationships between

software features within traditional IDEs[12,[7]. A possible reason is that the features

in IDEs for managing multiple artifacts is unordered tab panes. Moreover, when
required information is split across different hierarchies (e.g. file explorer, tabs,
panes, etc.), navigation becomes cumbersome. This problem is further exacerbated
when we consider that software development requires artifacts beyond the codebase
(e.g. documentation, code examples, debugging outputs).

In this thesis, towards addressing these concerns, we focus our interest on three
needs of developers during software development: (1) using artifacts that are more
than just code, (2) placing relevant information closer together (either spatially or in
groups), and (3) externalizing and recording relationships between artifacts through
annotations. Past canvas-based approaches have been created to ease navigation and
understand project structure [2] [7, 6] 5, 12]. These systems have addressed (1) to
some extent (e.g. via augmenting code with debugger output inline [6]), (2) based
primarily on syntactic linking (e.g. bubbles containing code linked together by call
graph relationships [2]), but none have directly addressed (3).

To the best of our knowledge, no in-depth studies have been conducted to de-
termine whether and how freedom to group and arrange artifacts, and link relevant
information patches in-situ aid in code comprehension.

To address this gap in knowledge, we presented annotations in a canvas-based
IDE, Synectic, which allows relevant information to be arranged and group accord-
ing to the user needs, and externalizes relationships through annotations. To eval-
uate how annotations help with code comprehension, we conducted a user study
comparing how newcomers to a project perform code comprehension tasks within a
traditional IDE (Eclipse) and our canvas-based IDE (Synectic). In particular, the

evaluation investigated four research questions:

RQ1: Do annotations affect the accuracy of code comprehension during newcomer’s

onboarding tasks?

RQ2: Do annotations affect the time of code comprehension during newcomer’s

onboarding tasks?

RQ3: Do annotations affect newcomer’s cognitive load during onboarding tasks

that require code comprehension?

RQ4: Do users perceive annotations to be useful for code comprehension?

We chose newcomers for our user study since they require significant effort towards
comprehending and building understanding of a codebase. Additionally, newcomers
have not previously built mental models or developed navigation habits for working
with a specific codebase. We asked participants to complete four comprehension
tasks; each task comprised two parts—to locate code relevant to a particular feature,
followed by a question requiring deeper understanding of that feature.

We analysed our observations using two lenses. We identified the hurdles that
newcomers encounter in traditional IDEs (Eclipse) as compared to canvas-based IDEs
(Synectic) using the Information Foraging Theory (IFT) [32] lens. We then examined
support for newcomers’ code comprehension using the four categories of comprehen-
sion questions defined by Sillito et al. [37] to see whether annotations and links can
alleviate some of the difficulties.

The rest of this thesis is organized as follows. Chapter 2 presents a review of
the background and prior research related to this work. Chapter 3 provides a brief
description of Synectic and its annotations feature. Chapter 4 describes the method-

ology of the user study we conducted. In Chapter 5, we present the results of the

user study. Chapter 6 builds upon the collected metrics from users doing the code
comprehension tasks and relates them to (i) the hurdles to foraging that newcomers
encounter in traditional IDEs, and (ii) the support for code comprehension in our
canvas-based IDE. Finally, Chapter 7 concludes the thesis with a brief summary of

the key takeaways.

Chapter 2: Background

2.1 Information Foraging Theory

Information Foraging Theory (IFT) explains and predicts how humans seek informa-
tion within information-rich environments. This provides a theoretical foundation
to investigate why some software engineering tools fail, or succeed, at supporting
software developers’ work. IFT [32] explains how humans seek information is anal-
ogous to how animals forage for prey in the wild. Originally applied to user-web
interactions, researchers expanded IFT to suitably explain human behavior during
software development [20, 21, [8, 27, 28]. IFT has also be applied to design tools
supporting development activities [8], 29, 20].

IFT describes a human seeking information as akin to a predator (person seeking
information) pursuing prey (valuable sources of information) through a collection of
patches of information in an informational environment. Patches are connected by
traversable links that can lead to other patches of information. Each patch contains
information features that the predator can process.

The information features have value, as well as cost (in the form of time for
the human to read and process them). Traversing a link also has a cost (time to
go from one patch to the other). Figure graphically depicts an example of two
information patches. The central proposition of IFT is that a predator tries to
maximize the value of information gained from a patch over the cost of traversing to

the patch and processing the information [30]. However, predators cannot accurately

determine a patch’s value and cost prior to processing, so they make choices based on
their expectations of value and cost. These expectations are based on the previously

processed information, and perceived potential for future patches.

Figure 2.1: An example of two information patches

The directed edges is a navigable link from one patch to another, and the weight on each
link indicates the cost of traversing. Each patch contains a set of information features,
depicted as hexagons and the number inside each hexagon shows the procesing cost of the
information feature. Figure adapted from [33].

2.2 Code Comprehension Questions

Developers decide on the value of particular patches of information during foraging,
and in particular they must read and comprehend the underlying code in order to
evaluate whether it is relevant to their specific task. This comprehension process
requires that developers formulate and ask questions of the underlying information
(primarily comprised of code in the case of software development).

Several studies have examined the types of information that developers seek dur-
ing development tasks [16} 37, 36, 18, 22, [40]. In particular, we use the four categories
of code comprehension questions identified by Sillito et al. [37]. These categories rep-

resent a model for understanding how developers explore and understand code during

change tasks, and consist of: (1) Questions related to locating an initial focus point,
(2) questions about expanding relevant entities through exploring relationships, (3)
questions used for building understanding of concepts that span multiple entities,
and (4) contextual questions that build upon knowledge that spans multiple groups

of related entities. Figure illustrates these four categories.

(1) Finding Initial focus (2) Building on those (3) Understand concept (4) Undrestand concept over
points Points between related entities groups of related entitis

Figure 2.2: An overview of four categories of code comprehension questions

An overview of the four categories of code comprehension questions illustrated by dia-
grams depicting source code entities along with connections between those entities. Figure
adapted from [37].

These questions enable developers to build mental models of the underlying code
and facilitate the ability to confidently make changes to that code [19]. Combined

with IFT, these models provide a foundation for examining the effectiveness and

efficiency of developer tools during change tasks.

2.3 Alternative user interfaces in IDEs

Traditional file-based IDEs use individual code files as the core component that all
interactions and interfaces are designed around. This model creates barriers to effort-
less coding. Prior literature has shown that developers working in traditional IDEs

spend considerable time foraging for relevant information [31], navigating code [15],

and managing context when switching tasks and environments [14].

Alternative IDEs attempt to tackle some of these deficiencies through novel user
interfaces. Code Bubble replaced the IDE’s typical set of tabbed windows with a pan-
and-zoom interface [2]. Code Bubble presented the code as a collection of lightweight,
editable fragments called bubbles (see Figure 2.3). It allowed the relevant bubble
to be clustered in a group of bubbles. Code Bubble also linked the relevant code
bubbles together (through call graph relationship) during debugging. Another IDE,
Code Canvas, Also was presented with the similar idea to Code bubble, and at the
same time [7]. Later Code Bubble and Code Canvas teams collaborated to release

Debugger Canvas, an industrial version of the Code Bubbles paradigm [6].

Figure 2.3: Code Bubble interface

An example of a working set of bubbles. (a) User opens a bubble via the pop-up search
box, (b) resulting bubble, (c¢) user opens definition of two more bubbles side-by-side (au-
tomatically grouped); (d) a large working set of bubbles, including a (f) bubble stack of
references; (e) an overview is shown in the panning bar; (g) hover preview. Figure adapted
from [2]. An example of a working set of bubbles.

The Patchworks code editor was another design that based on the idiom of a

sliding grid strip (called ribbon) of code fragments (called patches) [12]. The pro-

grammer can use the ribbon view to adjustthe visible patch grid. It was aimed to

ease navigation among open patches. Figure depicts the Patchworks interface.

Figure 2.4: Patchworks interface

A Patchwork editor including, the patch-grid view (A) and the ribbon view (B). The
patch-grid view includes the package explorer (Al) and a 2 x 3 patch grid (A2). Four
of the patches contain code fragments and two are empty. The displayed patch grid is
actually a view into a larger patch ribbon (B) and the programmer can navigate by sliding
the view left or right along the ribbon. Figure adapted from [12].

All of these alternative IDEs have sought to reduce the costs of context switching
when navigating to relevant code, and lower the cognitive load required to understand
and operate on that code. However, improvements in these dimensions are still
possible and further work can help developers using both traditional and alternative
IDEs (since features developed in alternative IDEs don’t have to remain exclusive to

those IDEs).

10

Chapter 3: Annotations in Synectic

Synectic is an IDE designed as a canvas-based environment, similar to Code Bub-
bles [2] and Moldable Debugger [5], with spatial cognition as the central interaction
paradigm. Spatial cognition involves the human capabilities of object recognition,
object search, and navigation through space to enhance learning and knowledge ac-
quisition [I7]. Conventional user interfaces impede the power of spatial cognition
and reduces the amount of usable information that can be embedded within a user
interface.

Synectic provides a spatially-oriented interface that mimics cards on a canvas
in order to allow contextually relevant information to be arranged and grouped ac-
cording to the needs of the user. To further capture the relationships between these
cards, we include an annotation overlay that includes annotations and links that
can be attached to cards placed on the canvas. Figure presents a snapshot of
the Synectic interface, including three cards containing code editors and a browser
(displaying API documentation in this example), as well as annotations (shown as
yellow boxes) with links between cards and annotations (shown as black lines). These
annotations can attach to a single card (as shown in the bottom half of Figure ,
or linked between two cards in order to annotate relevant relationships between in-
formation contained within those cards (as shown in the top half of Figure . This
annotation overlay is provided in order to capture and express the previously hidden

relationships that developers intuitively create in their minds [19].

11

3.1 Support for Foraging

Information Foraging Theory (IFT) [32] 2], 30] provides a model for understanding
the needs of developers navigating for relevant information patches within an IDE
(see Section . And according to IFT, the costs of foraging are directly related to
the level of navigation affordances provided in the user interface. Maintaining code
often requires revisiting the same prey multiple times and gathering information that
spans multiple information features [§, [16]. The navigation pathways undertaken
to locate a particular prey or information feature are typically left to the memory
capacity of individual developers, and if deemed valuable, might remain open on the
screen for future use; this process is ad hoc and temporary.

The annotation features within Synectic provide a system for exposing and archiv-
ing these pathways so that revisiting prey and information features for similar tasks
does not incur the same costs as the first foraging session. The annotations within
Synectic allow for both individual notes that are attached to a single card (i.e. prey
containing possibly relevant information features), and notes that are attached to
two cards in order to visually represent relationships that span multiple information
sources. Although these features do not reduce the initial costs of foraging when
a task is being undertaken for the first time, all subsequent foraging sessions can
benefit from the presence of notes that indicate the scope of tasks, value of infor-
mation features, and navigation pathways for particular cards (i.e. prey containing

information features).

12

3.2 Support for Understanding

Developers use IDEs (and code editors) to solve problems that expand beyond a
monolithic model of code. This requires developers to deal with different versions
of files, information stored in a variety of formats, and layers of abstractions (e.g.
hierarchical, syntactic, semantic) that reduce cohesion in order to accommodate the
needs of different software systems (e.g. compilers, build systems, testing, etc.) [24].

The conventional design for dealing with multi-dimensional relationships in IDEs
has been to add tabbed or multi-pane user interfaces that individually represent a
lens under which we examine code (e.g. a debugger pane for examining run-time
state, a version control pane for reconciling different versions of code files, and tabs
of editors for operating across multiple code files). However, these interfaces limit the
ability to visually describe relationships between different entities. The relationship
between different tabs of code is not immediately ascertainable by looking at the
arrangement of tabs, and often conveys no information beyond the order in which
they were opened [30].

Synectic attempts to expose these interdependent relationships through cards
that can be rearranged and grouped according to the specific lens under which the
developer is examining the code. For example, a developer attempting to locate and
resolve a bug can open a series of syntactically related code files into individual cards.
The developer can then create a group of cards that contain code that modifies the
code elements involved in the bug, and another group of the non-modifying code
cards (just in case they contain information relevant at a later time). Additionally,
annotations within Synectic allow the developer to add notes that specifically call

out the relevant information found in each card (or group of cards).

13

package edu.osu.u

package edu.osu.ui. ~

import static edu.
import static edu.
import static edu.
import static edu.
import static edu.
import static edu.
import static edu.
import static edu.
import static edu.
import static edu.

import .vaadin.
import Jwaadin.,
import .waadin.
import Lvasdin.
import .vaadin.
import .vaadin.
import Jwaadin.,
import vaadin.
. . import . .8

import static edu. In class “MainView.java” , for imggrt . _b22|
import static edu. adding a menu item to the menu|(import .osu. bach
such as "product"™ menu item), import B .bacl
we should check if the current import Luilb
4 » user has access right to the import cuie

menu item page. q »

o

WD OGE G LN L pa e
[RN Y R S RTRT R

import com.waadin.

4 p C . X : .

Spring jpa repository derives the
|https:ﬂdocs.spring.io.fspring guery from the method name

directly. The general approach is
Go to remove a given set of well-

known prefixes from the method

name and parse the rest of the

-
4—42 Query method. You can find more
Creation P vk P

The query builder

mechanism built

4

Figure 3.1: Synectic interface

Synectic provides a canvas-based environment containing spatially arranged cards of rele-
vant information (code, websites, etc.) with annotations that can be linked to individual
cards (bottom) or between cards (top).

14

3.3 Support for Maintaining

Mental models are constructed representations of real world that mirror a working
understanding of observed phenomena [I3]. Within software development, mental
models contain a developers’ knowledge and insights into both code and external
constraints on the use of that code [19] 41]. Synectic provides direct representation of
these mental models through spatially arranged cards of information, and through the
annotating them which allow the intrinsic knowledge of developers to be extrinsically
archived in their IDE.

Research has shown that maintaining mental models incurs a cognitive cost on
developers [19]. This cost affects locating relevant information (see Section ,
and sorting through that information to create a mental model that is relevant to
the current task (see Section . After incurring these costs, developers try to
reduce or remove these costs from future work by saving the relevant information in
code, comments, and documentation that maintains as much of the mental model as
possible.

During maintenance tasks, developers often seek to understand (or remember) dif-
ferent aspects of individual entities (known as information features in IFT), building
understanding of concepts that span multiple entities, and expanding to the larger
context of concepts that encompass groups of entities [37, 8]. These relationships
are often valuable for a variety of maintenance tasks, but left to each individual
developer to explore and build their mental model through direct experience with
reading and manipulating the code. The annotation features within Synectic pro-
vide a simplified method for capturing and storing this information so that future

developers (or the same developer working on future tasks) can quickly recover their

15

mental model; leveraging it to potentially reduce maintenance time and effort.
We further expand upon the use and benefits of annotations within a canvas-
based environment through user studies described in the Study Design and Results

chapters.

16

Chapter 4: Study Design

In this chapter, we describe the experimental design of the user study we conducted
to compare the annotations in Synectic with the notes functionality in Eclipse.

Our study has two treatments — Synectic (with annotations) and Eclipse (with
notes). Participants were randomly assigned to one of the two treatments (between-
subjects) and asked to complete four program comprehension task using the assigned
IDE. Each task required participants to answer questions about the code. After
completing each task, participants were asked to rate their perceived cognitive loads
for that task. At the and of all tasks, they were asked to rate the usability of
annotations/notes within their assigned IDE.

We describe the components of the user study in details below.

4.1 Participants and Treatments:

Our participants comprised graduate level computer science students recruited through
convenience and snowball sampling [I0]. These participants represent our target
population of newcomers to some project and help our objective of studying how
appropriate annotations are for onboarding newcomers in.

22 participants were recruited through university mailing lists; Table shows
the distribution of our participants (13 participants were men, 8 were women and
one participant preferred not to disclose their gender). The median of programming

experience was 5 years for both groups (with mean=7.4 years and SD=5.5 years for

17

Eclipse, and mean=7.0 years and SD=5.0 years for Synectic).

Ptc.! Gnd.! Exp.iﬁ Ptcl Gndi Exp [l

E1 M 15 S1 M 16
E2 M 8 52 F
E3 M S3 M
E4 M S4 M
E5 F S5 M
E6 M 19 S6 M 12
E7 F 8 S7 F 8
E8 F 5 S8 F 2
E9 M 10 S9 P 4
E10 M) 510 M 15
E11 F 3 S11 F 4

Table 4.1: Study Participant Demographics

! Participant (E for Eclipse, S for Synectic) ! Gender (M for Male, F for Female, P for Prefer not
to disclose) il Years of software development experience

11 participants were randomly assigned to each treatment. This assignment was
balanced based on the participant’s programming experience to keep mean experience
consistent. All 11 participants from the Eclipse treatment were familiar with Eclipse
to some degree, whereas, none of the 11 Synectic participants were familiar with
Synectic.

Each study session was time-boxed to two hours. We obtained participant’s con-
sent and walked them through their assigned IDE, the task project, and procedures.
Following these, participants were asked to complete a warm-up task to get used
to the study protocol. Participants were asked to think aloud and we recorded the

screen and audio of the them during the tasks. After the tasks, participants com-

18

pleted a usability survey related to the annotation/notes feature. At the end of the

study, participants were offered US$20 as compensation for their time.

4.2 Project and Tasks:

The tasks were based on a Java project (LOC =~ 5000) designed for a bakery to
manage their orders and customers. It includes functions to keep inventory of prod-
ucts, customers, employees, and a visual dashboard to summarize all transactions ﬂ
The project was implemented using Vaadin framework. None of our participants was
familiar with this framework, making this project a good choice.

A senior developer from the project provided the necessary information aimed to
help newcomers understand the code base. The information was presented in two
formats: through the annotations in Synectic, and as a word document to be loaded
in Eclipse; both contained the same information.

Participants were given four comprehension tasks. These tasks were designed to
be representative of common problems that newcomers experience when onboard-
ing [I]. Each task comprised two parts. Part A involved locating the element
(method, class etc.) in the codebase related to a specific feature. Finding the initial
focus point of a programming task is a well known problem discussed by many re-
searcherscite|. Part B included an in-depth question regarding the Part A feature,
such as, how a specific aspect of the feature has been implemented, or what needs to
be modified to change an aspect of the feature. see Table for the specific prompts
and questions given to participants in the study prompt.

After each task, participants reported their perceived cognitive load for the task

"https://vaadin.com/start/latest/full-stack-spring

https://vaadin.com/start/latest/full-stack-spring

19

Task‘ Part ‘ Question

A Name the class(es) and method(s) in which we put the ”product”
menu item in the list of system menus.
1 To add a menu item in the body of ”configure” method, an instance
B of 7 AppLayoutMenultem” has been created. Which parameters are
needed to create an ” AppLayoutMenultem” for the “product” menu
item? Explain what each parameter means.
A In which class(es) have “product” validations (e.g. not blank,
N acceptable format for a field,...) been added?
B How did we limit the maximum price of a product?How does the
system limit the maximum price of a product?
A In which class(es) do we add the code to get the user access to the
“Product” pages?
3 B We want only the user with role “Manager” be able to have access
to the “product” page. What changes would you apply?
A Which class(es) are responsible for implementing a
"product”-related search?
4 We want to be able to search the products by product Name and
B .
Price. What changes would you apply?

Table 4.2: Tasks

List of the code comprehension tasks. Each tasks comprised of two parts (A and B)

20

by answering “how mentally demanding was the task?” (using a balanced Likert-
scale response, where 1 is very low and 7 is very high) [25]. After completing all
four tasks, participants provided overall usability ratings for the annotations/notes
features of the assigned IDE by completing a questionnaire based on the System

Usability Scale [4]. Table shows the six questions from our usability survey.

SUS ‘ Question

[think that I would use these on-boarding notes/annotations when
working on programming tasks.

SUS.1

I would imagine that most developers would like to use these
on-boarding notes/annotations when programming,.

SUS.2
SUS.3 I'found using these on-boarding notes/annotations unnecessarily
time-consuming.

I found these on-boarding notes/annotations helpful when completing
the tasks.

[found these on-boarding notes/annotations very
cumbersome/awkward to use.

SUS.4

SUS.5

I felt confident about completing my tasks when using these

SUS6 on-boarding notes/annotations.

Table 4.3: System Usability Scale (SUS) questions

4.3 Measurements and Constructs:

To answer our research questions, we measured time and evaluated the accuracy of
responses for each prompt/question. We provide definitions of all relevant constructs
used in our results and discussions below:

Time. The time taken to answer each question was the duration between the

time the participant switched to the IDE after reading the question and the time

21

they hit the “next” button on the task form to proceed to the next question. Time
spent in each task is the sum of the time spent in the two parts of the tasks. The
overall time for each participant is the average time taken in all four tasks.
Accuracy (A): Accuracy of a response is dependent on the completeness and cor-
rectness of individual elements within that response. We use the balanced Sgrensen—

Dice coefficient (Fj-score) [39] to calculate accuracy:

2TP

A= TP PP AN

Where True Positive (T'P) is the number of elements (e.g. class, method, etc.)
correctly identified in an individual response, False Positive (F'P) is the number
of elements incorrectly identified in the response, and False Negative (FN) is the
number of elements missing from the response. For a concrete example, if a prompt
asks for the names of relevant classes for a specific feature and that feature has three
relevant classes. Then a response that correctly names two relevant classes (TP) and
failed to mention the third one (FN), but includes three other irrelevant classes (FP)
in the response, would result in an accuracy A = 532~ = 0.5 (or 50%).

Since each task is comprised of two parts, we calculate the accuracy of a task
such that Ay = w (where Ar, represents accuracy from Part A, and Ag,
represents accuracy from Part B). The overall accuracy for each participant is the
average accuracy in all four tasks.

Cognitive load. The perceived cognitive load was reported by participants after
each task using a seven-point Likert scale (where 1 is very-low, and 7 is very-high).
The overall cognitive load for a participant is the average over the four tasks.

Usability. The perceived usability of the onboarding document/annotations

22

were reported by participants at the end of the study using a seven-point Likert
scale (where 1 is strongly-agree, and 7 is strongly-disagree) and standardized System
Usability Scale (SUS) prompts [4]. Table shows the questions. SUS.3 and SUS.5
were negatively-worded prompts, which required inverting the Likert scale (where 1
is strongly-disagree, and 7 is strongly-agree) to maintain consistency with positively-
worded prompts. The perceived usability score for each participant was the sum
of the scores across all question. The overall usability score of each participant
converted to a 0-100 scale.

Each participant was given four code comprehension tasks. This means we ob-
tained four measurements for each participants. These multiple measurements are
not independent data points and generally assumed to be correlated. One approach
to address this issue is calculating a summary measure for each participants which
is often the mean value of the measurements [26]. Therefore, we defined the overall
time, accuracy, and cognitive load for each participant as the summary measure for

each participant.

23

Chapter 5: Results

In this chapter, we present the results of the our analysis of the data obtained from

22 participants of the user study.

5.1 RQI1: Accuracy

RQ1: How do annotations affect the accuracy of a newcomer’s comprehension of the
code during onboarding tasks?

We measured accuracy of responses for each task using the balanced Sgrensen—
Dice coefficient (Fj-score) [39]. The overall accuracy for each participant is the
average accuracy in all four tasks.

Participants using Syntectic had a higher overall accuracy score, as shown in Fig-
ure 5.1} A Wilcoxon Rank-Sum test indicated that accuracy was higher for Synectic
participants (Median: 0.75) than for Eclipse participants (Median: 0.45), (W = 9.5,
p-value < 0.001, two-sided Wilcoxon rank-sum test). The analysis also showed a
large effect size (Cliff’s Delta § = 0.84). Note that in the case of Task-3 the spread
for Synectic participants is much lower than Eclipse, this was because finding the
information for Part-B of the task was easily done because of the annotations. Sec-

tion [6.2] discusses this further.

24

Accuracy (percentage)

1.0 .

0'8 - :

06 Treatment
B3 Eclipse

0.4 Bl Synectic

0.2 ’

0.0 .

T1 T2 T3 T4 overall

Figure 5.1: Boxplots of accuracy scores

The figure shows boxplots for accuracy scores for each task T1-T4 (left bars), as well as
for overall accuracy scores(the right-most pair of bars) grouped by treatment (Synectic or
Eclipse).

Time (Second)
2000 R
1500
. Treatment
1000 B3 Eclipse
* BE Synectic
500 *
0
T1 T2 T3 T4 overall

Figure 5.2: Boxplots of time to completion

The figure shows the boxplots for time spent for each task T1-T4 (left bars), as well as for
overall time (the right-most pair of bars) grouped by treatment (Synectic or Eclipse).

25

5.2 RQ2: Time

RQ2: Do annotations affect the time of code comprehension during newcomer’s
onboarding tasks?

We measured the time taken to complete each task. The overall time for each
participant is the average of time over all four tasks.

The median of overall time taken by Synectic group (440 seconds) was smaller
than that of Eclipse group (607 seconds), as shown in Figure However, the
difference failed to achieve statistical significance (W = 74, p-value = 0.40, two-

sided Wilcoxon rank-sum test).

5.3 RQ3: Cognitive Load

Cognitive Load (0-7 scale)
6
5 *
Treatment
B BS Eclipse
. BE Synectic
3
T1 T2 T3

T4 overall
Figure 5.3: Boxplots of cognitive load

The figure shows the boxplots for reported cognitive load for each task T1-T4 (left bars),
as well as for overall cognitive load (the right-most pair of bars) grouped by treatment
(Synectic or Eclipse).

RQ3: Do annotations affect newcomer’s cognitive load during onboarding tasks

that require code comprehension?

26

The perceived cognitive load was reported by participants after each task using
a seven-point Likert scale. The overall cognitive load for a participant is the average
over the four tasks.

Synectic participants reported less overall cognitive load than Eclipse participants
as shown in Figure 5.3l A Wilcoxon rank-sum test indicated that Synectic partic-
ipants reported lower cognitive load cognitive load (Median: 3.5) than the Eclipse
participants (Median: 5), (W = 107, p-value = 0.002, two-sided Wilcoxon rank-sum

test). The analysis also showed a large effect size (Cliff’s Delta § = 0.77).

5.4 RQ4: Usability

SUS (percentage) |

100

80
60 Treatment

B Eclipse
40 B8 Synectic

20

Eclipse Synectic

Figure 5.4: Boxplot of system usability scale
Boxplot of System Usability Scale (SUS) percentages grouped by treatment(Synectic,

Eclipse)

RQ4: Do users perceive annotations to be useful for code comprehension?

The perceived usability of the onboarding annotations/notes were reported by
participants at the end of the study using a seven-point Likert scale. The perceived
usability score for each participant was the sum of the scores across all question

converted to a 0-100. scale.

27

Participants rated Synectic as more usable than Eclipse. The average of usability
scores reported by Synectic participants (73.74) was higher than the average of us-
ability score reported by Eclipse participants (53.79). Figure|5.4|shows boxplot of the
usability score reported by participants. Also, a Wilcoxon rank-sum test showed that
the groups differ in usability score (p-value < 0.0123, two-sided Wilcoxon rank-sum
test) with the usability of Synectic (Median: 72.22) was higher than Eclipse (Median:

52.78). The difference between the groups was large (Cliff’s Delta § = 0.64).

28

Chapter 6: Discussion

We observed participants in the Synectic group answered questions with higher ac-
curacy than participants in the Eclipse group. The Synectic group also incurred less
cognitive load when answering the study task questions.

In this chapter, to understand the observed differences between the Synectic group
and the Eclipse group, we will first look at how and where participants struggled with
navigation and foraging for information from the perspective of Information Foraging
Theory (IFT) [33]. Next, we examine code comprehension using the four categories
of questions that developers ask during change tasks in Silito et al. [37]. Combining
these models allows us to compare Eclipse and Synectic support for locating relevant
information and comprehending the code necessary to undertake code maintenance

tasks.

6.1 Using IFT to understand navigation and foraging behavior

Information Foraging Theory (IFT) describes how people seek information [32]. IFT
is a suitable theory for explaining and predicting developers behaviors, and can be
applied to tool design [8, 29, 20].

As mentioned in the study design (Chapter , participants were presented with
an onboarding document displayed as a set of annotations within Synectic, and as a
text document loaded within Eclipse; the information provided was identical for both

groups. In IFT terminology, each paragraph of the onboarding document provided

29

to the Eclipse group is an information patch, and the full document is a collection of
patches arranged in a sequential topology. For the Synectic group, each annotation
contains an information patch, but is arranged to be in proximity to the relevant

code discussed within the patch.

6.1.1 Foraging in the document

Participants in the Eclipse group had to forage for the right prey by navigating across
patches arranged sequentially in the onboarding document. Eclipse participants fol-
lowed two strategies to avoid having to read the entire document; visually skimming
the document and using keyword searching. Although successful some of the time,

these strategies also posed problems for participants.

6.1.1.1 Skimming can backfire:

All Eclipse participants, at least once, skimmed through the patches in an attempt
to mitigate the full costs of foraging across the entire document. However, skimming
still involved some cost as participants had to navigate through irrelevant patches
(i.e. paragraphs not relevant to the task at hand). Moreover, skimming backfired
when participants overlooked the patch containing the prey.

For example, E11 overlooked the information she needed while skimming the
onboarding document to complete Task-1 (see Table 4.2 for task descriptions). When
navigating the document, E11 tried to identify the class and method used to add an
item to the system menu. “I'm looking in the document to find something related

to the product”; she skimmed the document from bottom to top, passing by the

30

relevant patch several times. After 1.5 minutes of scrolling within the onboarding
document (i.e. foraging), she found the correct patch and began thoroughly reading
through the text within the patch. E11 was not the only participant who struggled
with skimming. Other participants (e.g., E10 during Task-3) were unable to find the
relevant patch even after multiple skimming attempts, and eventually gave up on

completing portions of the study tasks.

6.1.1.2 Searching by keyword can make or break:

Some participants used keyword search to reduce the number of potential patches.
However, this strategy was not always successful. Some participants used incorrect
keywords (or synonyms of relevant keywords), which returned no patches or irrelevant
patches.

During Task-4, which asks participants to locate and prepare to update the
product page with additional search functionality, E7 used the keyword “search” for
searching within the onboarding document “I'm just keep searching this document to
see if there is anything to do with search”. The search results included documenta-
tion describing the implementation of search functionality in the Storefront page,
but nothing in regards to the product page. Other participants (E4 and E5) also
faced the same problem and became stuck. In these cases, the keyword mismatch led
participants astray, and arose because the author of the onboarding document had
used the word “find” instead of “search” in the patches related to the product page.
This variation in terminology is a common problem for newcomers. Furnas et al. [9)]
mention that people use a surprisingly large variety of words to refer to the same

thing, and new users often use the wrong words. This disparity causes newcomers

31

to fail more often in achieving the actions or information they want, which is known
as the “vocabulary problem”.

Among Synectic participants, information foraging was less of a challenge. Patches
were contained within annotations that were linked to cards containing directly re-
lated code. This interweaving of code and information patches takes advantage of
the Gestalt laws of perceptual organization, specifically proximity and continuity,
which allowed participants to understand information is spatially proximate to re-
lated information and following the link-directed pathways to find additional relevant
information [34] [43]. Synectic participants were able to visually skim groups of re-
lated cards to quickly narrow in on the information they needed. And once located,
participants were able to use annotations to connect relevant information to code,

which reduced their overall foraging costs.

6.1.2 Foraging across code and document

Foraging in the onboarding document was only the start for Eclipse participants.
After finding the right information in the document patch, participants had to refer
to the appropriate code patches in order to comprehend the code. Navigating between

the document and code patches imposed additional costs on foraging.

6.1.2.1 Hierarchy hides prey.

Code is hierarchical in nature; a method (patch) is contained inside a class (patch),
which is further contained in packages or components (patch). A relevant piece of

code required for a task could be at any level of this hierarchy. However, the Eclipse

32

user interface does not provide direct links between code and documentation (except
in the case of Javadocs and similar code comment standards that allow URLs for
linking sections of code to outside documentation). For example, Eclipse participants
relied on the Project Explorer view in order to navigate to potentially relevant code
patches during our study.

The Project Explorer view itself is a patch, providing cues about existing classes
and packages as well as the hierarchical structure of code (e.g. the structure of classes
contained in packages). Well-established projects can have many hierarchical levels,
and require developers to forage for prey buried deep within the project hierarchy.
The hierarchy of the project used in our study was 6-levels deep, which renders
foraging strategies involving systematic searches as non-trivial and cost-prohibitive.

For example, when working on Task-1 (see Table for task descriptions), E6
believed that the relevant piece of code (prey) should be in a patch that discusses
the user interface; “I tmagine it should be a Ul kinda area.” However, the prey
(Mainview.java) was six levels deeper than the file that E6 was currently exam-
ining. He had to guess which path to further drill down into, and at some point
E6 complained, “why is this folder structure so deep? It’s horrible!” This process
of drilling down was made more difficult by the lack of cues indicating which paths
were more likely to yield the desired prey. When E6 became frustrated, he switched
strategy and began expanding each level of the tree hierarchy, saying, “let’s explore
them all.” Once all paths were expanded, he skimmed through the file names in order

to locate the right patch.

33

6.1.2.2 Prey scattered across hierarchy.

Foraging cost was higher when prey was scattered across hierarchy (e.g. relevant
classes were spread across file structure and packages). Participants had to navi-
gate across different levels of the hierarchical structure several times for each prey.
This imposed high cognitive loads, reduced their focus, and lengthened the time to
complete a task.

For example, in Task-2, E11 used the Project Explorer to locate two classes men-
tioned in the document-ProductsView.java and product.java. She first found
ProductsView. java in the Project Explorer and read the code patch contained
within it. She returned to the Project Explorer in order to locate the second class
(product. java) as well. She struggled with finding the second prey for more than

2.5 minutes:

“I don’t know where this product. java is. The only thing that I can do

1 to go through every package and search.”

In total, she spent 4.5 minutes searching through the Project Explorer to find both
class files. During this search, she lost track of her original goal, “OK, what was the
question?” After rereading the task instructions, she had to reorient herself within
the Eclipse user interface before restarting her foraging. This process was repeated
for both class files.

In general, context switches between code and document patches incurs a cog-
nitive load [42]. Within our study, this cost increased as participants attempted to
answer task questions that were increasingly complex. First, when foraging for rel-
evant patches by navigating through the file hierarchy, participants had to manage

the context switches between examining a potentially relevant file and searching for

34

new potentially relevant files. Second, when attempting to correlate the information
found in particular files, participants had to switch between interfaces and informa-
tion formats (reading source code and reading text documentation have both similar
and different constraints for human comprehension and learning [35]). And finally,
when a sufficient number of relevant patches have been located, participants had to
switch between the files in the process of building understanding and developing a
mental model of the code.

The costs of these context switches impede comprehension and put a high cog-
nitive load on participants who may become disappointed and discourage if the cost
of extracting or locating information is higher than the expected costs[30]. Several
participants in our study reported becoming disappointed (and even abandoning par-
ticular tasks) when the high cost of locating prey across boundaries in user interfaces
and information formats exceeded their expectations.

In Synectic, however, the documentation patches were placed adjacent to the
relevant code patches. And visually joined through the use of annotations and links.
This combined interface creates a unitary source of information that requires less
attention splitting, and thus leads to substantially enhanced performance [42]. For
participants in our Synectic group, this reduced the cost of foraging across patches

and ultimately allowed for faster comprehension and reduced cognitive load.

6.2 Using Sillito’s four stages of questions to understand code com-

prehension behavior

To understand why Synectic participants outperformed Eclipse participants in code

comprehension tasks, we use the four categories of code comprehension questions

35

described by Sillito et al. [37] to evaluate affordances that effect developer compre-
hension. We find that annotations in Synectic provide additional affordances that
developers can use to more quickly answer code comprehension questions in each
category.

According to Sillito et al. [37], developers ask comprehension questions in four
categories during code change tasks: (1) questions about finding points in the code
that were relevant to the task, (2) questions that explore relationships of an entity
believed to be related to the task, (3) questions that build an understanding of
concepts that involve multiple relationships and entities, and (4) questions that build
an understanding over groups of related entities (contextual questions).

Exemplifying the full spectrum of comprehension questions, we examine partici-
pant S5 during Task-4 through each of the four categories. Task-4 required partic-
ipants to develop an understanding of the search functionality implemented in the
target Java project (see Table ; understanding the code enough to make changes
to the search functionality so that search can use the product name and product

price fields in addition to the previous implemented search fields.

6.2.1 Finding an initial focus point

Developers start their task by finding points/entities that are relevant to the
task [37]. In Synectic, starting from the main canvas, annotations can help developers
narrow down the search and direct them to the group(of cards) related to the task,
and from there to the related cards inside the group.

For example, S5 started from the main canvas (Figur and looked at the

annotations to see which one was related to the task i.e. ‘product-related search’

36

29| mo1908s 909G “Apnjs Iesn o) Surmp H([] 21999UAG oy} Ul pausdo seaued ureur oy} o1 Jo joysdeus y
seaued jooloxd ‘(T O1300UAG :T°Q 2INIIq

[etua es=ooe ues satoz yoTuM ¥Iomemeil
sya £7T21 ‘,PAR[M3TAIONDOIS,.

U0 UOTIRIRTOSP S£ETO SU2 JO SAOQE,

ay3 uo ,paInoagd, worjezoumE YL

- (s5RTO MBTAEL 4 »
9Np01d) P31URIDEEIVDHET *ETTINAITINDS 4 »
Aq) sbed wa1T musw 5y1 01 a FUTPERA"WOD Juodut -
19p|ing Kianb ay agbrz sse00@ swy zssn

355ys prooys sm (meat »-npa T3S Juodur

&= yons)nusm =ua3 »npa d13Eys

uoneard ¥ butppe 0 ‘ ,eaR[MOTAUTEN. SSETO UT| 3'Mpa 371815
L »nps d13e3s |s*TTanenel Juodur

AlanD Ty »npa S

»npa dTiels

pes

5 s

s
Bunds;or Bunds-saopy/sduy S13e3s 3uodut
13835 30dut
»-npa >T3E3s Juodur

3]INg WsIueyoaW

+-UTpeRn-wod 3.0dur

138uTads 540 Juodur
138uTads 840 Juodup
133UTId5 510 Juodut

»]-3uTy - enel
»*npa 5T1E1S JJodup

‘gn°nso:npa asexred

iTn*nsonps ssexsed

JucIaI0)g

(Azo3Tsodszc-soTazasc

Hlomeudeld - (1an) 3anoa]

@CCQW QCH -M3TA)3IN3033TYoI2 ISTI-§ © 3N I puR ‘27172 ‘UCOT PaTITo=de M ‘HR1T NUSW GOEA I0J zamATod Bursn jusuodmos In S1=TdWsa
B - s1®azo am ‘sbed juworr sT01§ Syl T0g
“303f0zd aua o2 saoezraze
pue Buuds

.Eé
JoAIo1SIHZ e

u()2I06TIUCO, Y2 UT nUSE UTEm SY3 01 SWRAT NUSW PPE oM

Texsusb yaTM TETTTWE] 386 O

*UT pabBel sey IISN IW3I ICT 2TYTESIVVT AT YOTUM|
SW31T NUSW Wa1sAS TTE 30 1STT 3yl UTEIUOD EARL'M3TAUTER|

9
Bundsjor Bunds-ssop/-sduy

omresy Suudg

7

n g ‘g2u0
et re e R TeZauab 23Ul 1NOGER UOTIPWIOIUT
1ez3usb SwOs PuTI wEs nok ‘a3ay

*253[01d £TY3 UT £3THOTOUYDIL

qUSISIITP pesn aa®vy sy

080 -301w3uls G

37

70| wo1100s 00g *Apnjs 1osn oy Surmp dnotsd jonpoid oY) oy3 jo joysdeus y

dnois jonpoid

7/ pue ,(}Azoarsodsya=b, SPOUIIW SPTISA0 DINOUE OETR 2T

a * 4<20NPOII>30TATIEPNIDATAETSATTI, SIEITIAUT WO
sspoyasw , () GutysrepAuyaunco, pue ,BUTYSIEHAUYDUTI.
SpITSA0 PTNOYS 1T ‘YDTRSE WOISMD B JUAWITAWT OF

-23379p (aaes ‘puty -6-3)

buTidg -AIo1TS0da¥RAL SDUaIXD Sois trmese SnE 0O mERY csaEIoil
soezzeauT AZ017E0dSRAONDOIG

01 P31BTE3 S30TAISES SS3UTSNG SUl 313U IUSWSTAUT S|

< »

23TAI353

enfgaunm it uBAR[A201T£0d5¥200P0I, SUD

uT pIUTISP 3q PINOYE £SETD
3npoUg>aBe

[<aonpoid>aded JEAR[-30TATa5IONPOTd, SUL

pepaau s277enb WolEno IUL

28°NS0° NP3 3J00wT
128q°ns0" NP3 304w}
1289°N50° NP2 3J0duT
+ <13npoUgraeg

158uTads 80 Yuodur
138uTads 80 Yuodur
138uTads 80 Yuodur
13BuTad5" B0 1odur
133UTadS B0 Jdodur .
133UTadS" 30 LdoduT

1 228502307 23Tand

122q-nso-npa 30dut

138uTads -0 Juodut

ausaed &,m374 3O I0300TIEUOR
3u1 01 paesed £eU 30TAI3E
STUI'£E8T5 ,50TATSSIONPOTE,
JM3TAIONPOTE, IOT ‘315
-2035n715U05 5,mETA 03 pessed
£UY S0TATIE £TUL CSERID SOTATIE
(2521 2®) p=3u M3TA uoE:

= 2asy =M

3

(] 21399UAS :g'9 2anS31g

TTTM Issn * (S50 MSTAUTEH = 3nOART
’,30npoad, - anTea)a3n0¥)
Aq 5°3) maTa s7u3 02 33=HTARU uwD
Zsen ua uoTUM Ag uaed sua AZTosds
01 woTaEicuUWE 3anc¥y sn am ‘osTE o o S oo £
537173d02d A1TAUR 01 WAYA PUTY
313y 13 OsTe sIe sjusuodumod
pue siusuodwos andut In buTaweIo
Sy3 Jo saTaxadozd ay3 -abed] B
STTuM ’,2ABl-M3TAIONDOTI.
QU3 30 £2URUCANOD SUTRIUOD EERID MITA| -
€512 MaTA U3 UT

’yueTgioNg "5°3) uoTimiouUUE TAEp
ybnoIga UCTIEPTIEA PLeT3 [eTsusb

sua ope = ,2nel-3ompoxd,

4 » s£eTo A3TaUR SU3I UL

J*In*nsetnpa Jdodut
1"In*NSo* D3 JJoduT
122°n50° NP3 300uT
128°ns0" NP3 3J00uT
128q°ns0" NP3 3J00uT
dde"nso-npa Juodut
}-uTpeeA-wo> Juodur
}-uTpeeA-woD Juodut
}-uTpeRA-wOD JuoduT

a

L TSPUTEUOTIEDTTEAUESE, UONOIUI
"UTpeeA WOS }JoCWT maTpl0npoxd 2ya ut I3puTq Ag IuOp

138uTads B0 JuoduT

138UTadS Buo JuoduT o' Tranenel Juedut

)eq-nso:nps asexded seq-nso-np2 23exded

1 & (awew) T3M0TE,
S3TT (swen)zemoy sIsym 20ompoxd WOIT ¥
153726, @ yons Azanb ® ayew [TTm Hurids
‘u(eweu BuTIIE) 28R)ICUDIINTTAWENASPUTIL
sweu pouasw sya Huten +6°3) IUTII
3M DOY1EW PIZTTWOISND 3Y1 IO IWRU 3yl
Kg AIanD B £10NI15UGD JIOMSWRTT BuTIAS

b
111Nq WsIueysaw
Japjing Kianb ayy

uonesiD
Aend vy
(23]

Buudsor fiuuds soopyysdny

¥ - VI eyeq Sum

L uTpeRAuOs 1iocuT £T saTa73do1d A272US DuR sausuCAmOD
}-uTpERA-NOD LuoduT andut Tn usemisq Hurddew syl

}uTpRRAWO3 1J00WT
}uTPRRAWO3 1J00WT

Tn-nso-npa agexded

w
su2 01 P=ppE aq (32273 ‘=1=pan -
‘pesz ‘sqEs1d)saIniesy pnIo syl
4<390POII>MITAPNIDATIRGIORIIEAYn
seeTo oTxau=d
WoII LM2TAIONDOId. DUTPURIXD AR

4 4
*Tn-nso’npa Juodut
Juodut
Juodut
Jaocut
Juodut
JJodut
JJ00uT
3u00ut
3Juodut
3Juodut
Juodut
Juodut
Juodut
‘uTpeEA'WOD JJ0CUT

*In°nso‘npa asexyded

4
anbrunjumnrodd
35T = xew)37Tsd
2559u) yu=TgI0M3

-

npodg SSeT> STTand
A31038

10°Tranenel Juoduy

TTRA"XeARE Juodut
2pTTRA"XeAel Juodut
2pTTRA"XeAel Juodut
:prTe-xenel Juodut
s1suad-xenel JJodut

su3d"xenel Juodut

)2q°nso°npa a3exded

“pT snbTun £= gons
ssInjwsy uowmmos smos 235)
01 55912 LA2TIUFIORIISAY,

PU23X3 PTACUS

g3888T0 A3TAUZ U3 TTH

4
)T Suoy eatud
nTeApeIeIsUsDd
P1g

*1> 32e035qR STTGRA
sseTauadnspaddeLd

s3suad-xenel uodut
i1saad-xenel 1Jodut
itsaad-xenel jiodut
s1saad-xenel jiodut

10°Tranenel luodut
435 0T enel luodur

)eq-nsonpa adexzed

080 - 30 2w3ufs @

38

[9] moryoes vag “Apnis 1esn o1y SuULMp pIed Wsmoiq-qem pauado ue YIm dnoid jonpoid jo joysdeus y

‘PIed 19SMoIq-gom pouddo ue Ypm dnoad jonpoid ‘H([O100ULS €9 oIn3rq

TOTETTTO0g
:g xipuaddy

sousIajal
aoedsawepn
;¥ xipuaddy
xtpuaddy
sauoysoday vdr's
uoneuswngog
aouaiasay
suoIsuaIxg
eieg uuds gy

sj00y 185288y
WoJy sjuang
SFuysngnd oy

b B salolsoday
ejeq Suiuds Joy
suonejuswsajdwy
woisnd 9y

srucyTsodeyedreTqeus - 813u0 - Aoy Tsodea-ed(- exep - juomswed Sutads-Suo

:BuIMe||0) BY3 01 JB[IWIS SSE|D B 312840 ‘U011 InF1JU0D BABr 35N OL & SaoueIsul

Kioysoday

uoeINSIUod TWX UM Sunean sp

10 SijuooeABr YIM 184118 ‘'SB0BJIBIUI 8S0Y] 10} Saouelsul Kxoid a1es.o o) Buuds dn jas g
SpoyIBN
Kiand Suiyaa vy

mﬁmtﬁ:_
_ (sweuyser 3 Kioysoday
} <8uo] “uosuag>Auoitsoday Fuuysa o
spoylaw
Kiand 2%
s1da0u00 2100 1Y

{ = } <8uo] ‘uosuag>Auorrsoday

sap0lsoday
eleq Sunds

:3|duwiexa Fuimol|o) a3 Ul UMOYS SE*a|puey pInoys 31 1eyl adA1 al pue sse|d ulewop Ym SUnjiom v

au3 0131 2df) pue s30RIAIUIGNS S11 J0 aUo Jo K10Soday Fuipualxa adepaIul UE 91E1930 'L seiouspuadsg g

Kynomalon
B MBN 2

:559001d dajs-inoy e saWo00aq sauanb asoyl uueoap ‘eleqg Suuds yiim aioisejep
Buikuapun ayy uo sauanb aney Ajjensn sauoisodal £3ijeucnnouny gnyo plepuels
ejepejay 198/0id |

spoylsw Aisnd 7'+

aoejald
-

09 Buuds/or Buuds s0p//sdny
o 4 p»

ejIRmRI0(BIURIRRY - VAP BYE(SuLidg

A MSTA STUI OF SIDOTARY OF STa® o
TTTM I260 - (SERTA"MITAUTEH =
‘,30mpoad, = anTEA) 2300
Aq 5°3) M3TA STU3 02 31EHTARU uEd
380 3u3 GoTUM A9 waed sua Ayosds NN
01 uwoT1EIOUUE 33nO¥Y IEn =M ‘osTE
I0 Swos suTIep uEd A
saT373do1d A1TIUR 02 W uT
233y 32¢ osTe 2ie sausuodmmoo - : 2 2 LeuE e
- pue sausucdwos andut In HuravaTo
2u1 Jo s3Tazadozd sul ‘abed) "
STTUM ‘.BABL H3TA2ODDOIdM
aY3 JO S1USUCAWOS SUTRANOS SEETD MAT, coero hera 2ua ue

4 >

T nsornps Juoduwt
TN nso-npa Juodut
122q°ns0"npa 3uodut
{28q°ns0"np3 1uoduT
{22q°nso*npa Juodut
*dde*nso*np3 JJodut
}*UTPRRA"WOD JuoduT
}*uTPRRA"WOD JuoduT
}-uTPRRA"WOD uoduT
}-uTpeen-wo> Juodur
}-uTpeeA-wOD Juodut ST
}-uTpeeA-wo> Juodut
}-uTpeRAtNOD 1UoduT
}uTpeRAtNOD 1JoduT

££275 £1TAUS au1 UT
-

4, T3pUTQUOTIEPTTEAUESE, UONOTYL
maTAI0npoxd Sy3 uT Teputq AQ auocp
saTazadoxd A3Taus pue siusuodmoD

andus Tm usamaaq Burddem 293

tnnso*nps s5exred

- — 7
p3pPR 3q T1TM (332T3P i
be=z ‘23e270)eaanaess pnio aua
oNPOZ3>MaTAPNIDAIZXEGIORIIEAT,
£eETo oTTBUD
fozr .maTA2onpOIg, Butpusaxs Ag

£2In3237 UOCWEOD

4

00Ut

-dde-nso"npa
1 uTpREA"WOD
b uTpeeA wOd
}*uTpeRA wod
1+ uTpeeA w0l
1+ uTpeeA w0l
1 uTpeeA-wod
b+ uTpeen-wod Juodur

¥ tn-nso‘nps sSexoed

AP L1a3Eg e

4

anbTun)uunTo28
35T = xew)3zrsd
*552u) HURTAIONE

nposg sseT> drTand
313038

10°TTIN"erel juodut
:pTTRA XEARL JJoduT
pTTRA XEARL JJoduT
piTea-xenel Jodut
pYTeA-xenel 3Jodur
srsuad-xenef 3Jodut
s1suad-xenel juodut

yeq-nso-nps asexoed

-pt snbrun cu gons

swos 238

01 SSPID LA1TIUIISBILEAY,
PUS1X3 PINCUS
£3558T0 A3TAUS Y2 TTY

4
/7 3uoT a3eATad
INTRAPIIRIUDE
P18

1> 1oes3sqe drrand
sserouadnspaddend

Tsaad xenel luodut
s7s42d"xenel Liodur
sTsaad*xenel lioduy
s7suad-xenel Juodup

10°Tran-enef 3uodut
12 0T enel Juodur

yeq-nso-nps asexded

eae-gyugpoes;

080 - 301 2m23uis @

39

“I'm in the main canvas and search for product-related search. I'm reading the notes”.
He found an annotation (Figur|6.1{ A) connected to the group of cards titled product
(Figur B). The annotation explained ‘how to add a CRUD page using product
page as an example’. He decided to expand this group; “I think I should go to this
group”. S5 found that the product group contained several cards and annotations
(Figur . He was hunting for the annotation which “gave [him/ a clue to product
search”. After skimming through the annotations for two minutes, he decided to
open the code card ProductRepository.java (Figur C) and read the methods

within this class.

6.2.2 Building on those points

. From the initial focus point, developers begin asking questions that explore rela-
tionships to expand entities believed to be related to the task [37]. Synectic provided
a set of connections between relevant cards (or annotations), which allowed partici-
pants to explore beyond their initial focus point (i.e. their initial card).

Once S5 had located ProductRepository. java as his initial focus point, he said,
“It contains a find method which seems to be interesting”. He minimized the card
and began to search for the location in which this ‘find’ class/method is called “there
should be some implementation related to the ProductRepostitory. java”. Using the
annotation link between the ProductRepository card and the ProductService. java

(Figure D) card, he decided to open the ProductService. java card.

40

6.2.3 Understanding concepts between related entities

. Using the relevant entities, developers ask questions to build an understanding of
concepts in the code that involve multiple relationships and entities [37]. In Synectic,
annotations linked to the entities (i.e cards/groups) provide expert description of
the concept and relationships between them. This documentation helps to build an
understanding of the concepts spanning related cards and groups.
To understand how the two classes ProductService. java and ProductRepository. java

interact with each other to implement a search, S5 read the annotation connecting
these two classes (Figure[6.2| E). He then opened the two cards side-by-side to exam-
ine them simultaneously, and noticed that the find method in ProductRepository
was being called in ProductService. This helped him understand the relationship

between these two classes.

6.2.4 Questions over groups of related entities

Finally, developers ask questions regarding related groups of entities, and the
relationships between those groups. The information within Synectic’s annotations,
and the links between cards, help to relate different concepts across the system to
build an overall understanding of the larger context.

Within our study, we asked participants to develop an understand of the overall
software in order to add additional functionality to the search feature. In order to
accomplish this task, participants need to know how search has been implemented,
and combine this understanding with how to make custom queries by method name

(using the Springs’ JPARepository API).

41

For S5, he checked the annotations to figure out how to adjust the implementation
to support search by both the name and price of the product. The annotation
connecting the ProductRepository card to a web-browser card explained how to
make custom query by method name (using Springs’ JPARepository)(Figur
F). He read the annotation and opened the web-browser card (Figur G) which
lead to the API documentation related to custom queries (Figur “I found the
documention for it”. The documentation explained how to create a custom query by
defining a method name. S5 was able to accomplish the task, even though he was
unfamiliar with the technology “Oh! I just should define a query method. I haven't
used this before, but I think this example here shows how to do it.”. He combined the
the knowledge of creating custom queries with his previous knowledge of how and
where the search method works (ProductRepository and ProductService classes).

In summary, developers must gather relevant information at multiple levels in or-
der to constructively work with large codebases. Typical IDEs (e.g. Eclipse) provide
limited capabilities for expressing relationships at the conceptual levels (phases 3 and
4 from Sillito et al. [37]), when context becomes important. Synectic provides an-
notations and groupings that point toward good initial focus points, groupings that
highlight important related entities, and annotated links that explain the relation-
ships between these entities and even the larger context within a software project.
With these features, Synectic facilitates all four phases of code comprehension ques-

tions described in Sillito et al. [37].

42

6.3 Threats to Validity

Our user study has several limitations inherent to laboratory studies of program-
mers. Our participants were graduate students and may not be representative of
professional developers. However, all participants had at least two years of software
development experience, and would likely be considered newcomers to any software
projects they contribute to now or in the near future. The task and code bases were
related to a single Java-based framework project, which may not be representative
of large software projects. However, our participants’ tasks were examined by a se-
nior developer on the project to verify that they represent onboarding tasks that do
occur in real-world development scenarios. Additionally, we did not ask participants
to implement new features or change the code directly, which is actually a common
practice for newcomers that are just beginning to learn about a project [38].

As with any empirical research involving participant observation, responses could
have been affected by the Hawthorne effect [23]. To mitigate biases in participant
responses, we were careful not to disclose the comparisons we were making during
the study. Additionally, participants might have previous experience using Eclipse,
but none had previously used Synectic. Participants could have been aware of ad-
vanced features in Eclipse that are not present in Synectic, which would reduce some
of the navigational costs. However, even with this potential disadvantage, we ob-
served participants using Synectic generally performed better than participants using

Eclipse.

43

Chapter 7: Conclusion

In this Thesis, we have presented annotations in Synectic, a canvas-based IDE with
spatially-oriented interface which allows relevant information to be arranged and
group according to the user needs, as well as externalizes relationships through an-
notations and links. Our aim was to provide developers with support for foraging
information, code comprehension, and code maintenance. To validate annotations in
Synectic, we conducted a user study comparing newcomer task support for foraging
and comprehension with a traditional IDE (Eclipse) and our canvas-based IDE. The
results of our user study show promising evidence that Synectic fulfills these goals:
We observed participants using annotations in Synectic were able to answer navi-
gation and comprehension questions with significantly higher accuracy (RQ1) and
efficiency (RQ2) than those using Eclipse. Also, participants using Synectic reported
less cognitive load (RQ3) and rated Synectic as more usable (RQ4) than Eclipse on
average. However, we was not able to find a statistically significant differences in the
time (RQ2).

These findings also suggest promising directions for future research. One open
question is how developers might use annotations in Synectic to externalize their
own mental model, and how revisiting their own annotations might impact future

performance during software development tasks.

1]

44

Bibliography

Sogol Balali, Igor Steinmacher, Umayal Annamalai, Anita Sarma, and
Marco Aurelio Gerosa. Newcomers’ barriers... is that all? an analysis of men-
tors’ and newcomers’ barriers in oss projects. Computer Supported Cooperative

Work (CSCW), 27(3-6):679-714, 2018.

Andrew Bragdon, Robert Zeleznik, Steven P Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J
LaViola Jr. Code bubbles: a working set-based interface for code understanding
and maintenance. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 2503-2512, 2010.

Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. Fre-
quently asked questions in bug reports. Technical report, University of Calgary,
2009.

John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in
industry, 189(194):4-7, 1996.

Andrei Chig, Marcus Denker, Tudor Girba, and Oscar Nierstrasz. Practical
domain-specific debuggers using the moldable debugger framework. Computer
Languages, Systems € Structures, 44:89-113, 2015.

Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and Steven P
Reiss. Debugger canvas: industrial experience with the code bubbles paradigm.
In 2012 34th International Conference on Software Engineering (ICSE), pages
1064-1073. IEEE, 2012.

Robert DeLine and Kael Rowan. Code canvas: zooming towards better de-
velopment environments. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 2, pages 207-210, 2010.

Scott D Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. An information foraging theory
perspective on tools for debugging, refactoring, and reuse tasks. ACM Transac-

tions on Software Engineering and Methodology (TOSEM), 22(2):14, 2013.

George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Du-
mais. The vocabulary problem in human-system communication. Communica-

tions of the ACM, 30(11):964-971, 1987.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

45

Leo A Goodman. Snowball sampling. The Annals of Mathematical Statistics,
pages 148-170, 1961.

Nathan Hawes, Stuart Marshall, and Craig Anslow. Codesurveyor: Mapping
large-scale software to aid in code comprehension. In 2015 IEEE 3rd Working
Conference on Software Visualization (VISSOFT), pages 96-105. IEEE, 2015.

Austin Z Henley and Scott D Fleming. The patchworks code editor: toward
faster navigation with less code arranging and fewer navigation mistakes. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 2511-2520, 2014.

Philip Nicholas Johnson-Laird. Mental models: Towards a cognitive science of
language, inference, and consciousness. Number 6. Harvard University Press,
1983.

Mik Kersten and Gail C Murphy. Using task context to improve programmer
productivity. In Proceedings of the 14th ACM SIGSOF'T international sympo-
stum on Foundations of software engineering, pages 1-11, 2006.

Andrew J Ko, Htet Aung, and Brad A Myers. Eliciting design requirements for
maintenance-oriented ides: a detailed study of corrective and perfective main-
tenance tasks. In Proceedings of the 27th international conference on Software
engineering, pages 126-135, 2005.

Andrew J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on software engineering,
(12):971-987, 2006.

Barbara Landau and Ray Jackendoff. “what” and “where” in spatial language
and spatial cognition. Behavioral and brain sciences, 16(2):217-238, 1993.

Thomas D LaToza and Brad A Myers. Developers ask reachability questions.
In Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 185-194, 2010.

Thomas D LaToza, Gina Venolia, and Robert DeLine. Maintaining mental mod-
els: a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering, pages 492-501. ACM, 2006.

Joseph Lawrance, Rachel Bellamy, Margaret Burnett, and Kyle Rector. Using
information scent to model the dynamic foraging behavior of programmers in
maintenance tasks. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1323-1332, 2008.

[21]

22]

23]

[26]

[27]

[29]

[30]

46

Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle
Rector, and Scott D Fleming. How programmers debug, revisited: An informa-
tion foraging theory perspective. IEFE Transactions on Software Engineering,
39(2):197-215, 2010.

Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. On the
comprehension of program comprehension. ACM Transactions on Software En-
gineering and Methodology (TOSEM), 23(4):31, 2014.

Rob McCarney, James Warner, Steve lIliffe, Robbert Van Haselen, Mark Griffin,
and Peter Fisher. The hawthorne effect: a randomised, controlled trial. BMC
medical research methodology, 7(1):30, 2007.

Nicholas Nelson, Anita Sarma, and André van der Hoek. Towards an ide to
support programming as problem-solving. In PPIG, page 15, 2017.

Fred Paas, Juhani E Tuovinen, Huib Tabbers, and Pascal WM Van Gerven.
Cognitive load measurement as a means to advance cognitive load theory. FEd-
ucational psychologist, 38(1):63-71, 2003.

Nick R Parsons, M Dawn Teare, and Alice J Sitch. Science forum: Unit of
analysis issues in laboratory-based research. Elife, 7:e32486, 2018.

D. Piorkowski, S. D. Fleming, C. Scaffidi, M. Burnett, I. Kwan, A. Z. Henley,
J. Macbeth, C. Hill, and A. Horvath. To fix or to learn? how production bias
affects developers’ information foraging during debugging. In 2015 IEEE Inter-

national Conference on Software Maintenance and Evolution (ICSME), pages
11-20, Sep. 2015.

D. Piorkowski, S. Penney, A. Z. Henley, M. Pistoia, M. Burnett, O. Tripp, and
P. Ferrara. Foraging goes mobile: Foraging while debugging on mobile devices.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 9-17, Oct 2017.

David Piorkowski, Scott Fleming, Christopher Scaffidi, Christopher Bogart,
Margaret Burnett, Bonnie John, Rachel Bellamy, and Calvin Swart. Reactive
information foraging: An empirical investigation of theory-based recommender
systems for programmers. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1471-1480, 2012.

David Piorkowski, Austin Z Henley, Tahmid Nabi, Scott D Fleming, Christo-
pher Scaffidi, and Margaret Burnett. Foraging and navigations, fundamentally:
developers’ predictions of value and cost. In Proceedings of the 2016 24th ACM

[31]

[37]

[40]

47

SIGSOFT International Symposium on Foundations of Software Engineering,
pages 97-108. ACM, 2016.

David J Piorkowski, Scott D Fleming, Irwin Kwan, Margaret M Burnett,
Christopher Scaffidi, Rachel KE Bellamy, and Joshua Jordahl. The whats and
hows of programmers’ foraging diets. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 30633072, 2013.

Peter Pirolli and Stuart Card. Information foraging. Psychological review,
106(4):643, 1999.

Peter L. T. Pirolli. Information Foraging Theory: Adaptive Interaction with
Information. Oxford University Press, Inc., New York, NY, USA, 1 edition,
2007.

Philip T Quinlan and Richard N Wilton. Grouping by proximity or similarity?
competition between the gestalt principles in vision. Perception, 27(4):417-430,
1998.

Darrell R Raymond. Reading source code. In CASCON, volume 91, pages 3-16,
1991.

Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How do
professional developers comprehend software? In 2012 34th International Con-
ference on Software Engineering (ICSE), pages 255-265. IEEE, 2012,

Jonathan Sillito, Gail C Murphy, and Kris De Volder. Asking and answering
questions during a programming change task. IEFE Transactions on Software
Engineering, 34(4):434-451, 2008.

Susan Elliott Sim and Richard C Holt. The ramp-up problem in software
projects: A case study of how software immigrants naturalize. In Proceedings
of the 20th international conference on Software engineering, pages 361-370.
IEEE, 1998.

Thorvald Sgrensen. A method of establishing groups of equal amplitude in plant
sociology based on similarity of species content and its application to analyses of

the vegetation on danish commons. Kongelige Danske Videnskabernes Selskab,
5(4):1-34, 1948.

Jamie Starke, Chris Luce, and Jonathan Sillito. Searching and skimming: An
exploratory study. In 2009 IEEE International Conference on Software Main-
tenance, pages 157-166. IEEE, 2009.

[41]

[42]

48

M-AD Storey, F David Fracchia, and Hausi A Miiller. Cognitive design elements
to support the construction of a mental model during software exploration.
Journal of Systems and Software, 44(3):171-185, 1999.

John Sweller, Paul Chandler, Paul Tierney, and Martin Cooper. Cognitive load
as a factor in the structuring of technical material. Journal of experimental
psychology: general, 119(2):176, 1990.

Max Wertheimer. Laws of organization in perceptual forms. 1938.

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-
ping Li. Measuring program comprehension: A large-scale field study with pro-
fessionals. IEEE Transactions on Software Engineering, 44(10):951-976, 2017.

	Introduction
	Background
	Information Foraging Theory
	Code Comprehension Questions
	Alternative user interfaces in IDEs

	Annotations in Synectic
	Support for Foraging
	Support for Understanding
	Support for Maintaining

	Study Design
	Participants and Treatments:
	Project and Tasks:
	Measurements and Constructs:

	Results
	RQ1: Accuracy
	RQ2: Time
	RQ3: Cognitive Load
	RQ4: Usability

	Discussion
	Using IFT to understand navigation and foraging behavior
	Foraging in the document
	Foraging across code and document

	Using Sillito's four stages of questions to understand code comprehension behavior
	Finding an initial focus point
	Building on those points
	Understanding concepts between related entities
	Questions over groups of related entities

	Threats to Validity

	Conclusion
	Bibliography

