
Hits and Misses: Newcomers’ ability to identify
Skills needed for OSS tasks

Italo Santos∗, Igor Wiese∗†, Igor Steinmacher∗†, Anita Sarma‡ and Marco A. Gerosa∗
∗Northern Arizona University, Flagstaff, AZ, USA

†Federal University of Technology, Campo Mourao, PR, Brazil
‡Oregon State University, Corvallis, OR, USA

Email: italo santos@nau.edu, igor@utfpr.edu.br, igorfs@utfpr.edu.br, anita.sarma@oregonstate.edu, marco.gerosa@nau.edu

Abstract—Participation in Open Source Software (OSS)
projects offers real software development experience for students
and other newcomers seeking to develop their skills. However,
onboarding to an OSS project brings various challenges, includ-
ing finding a suitable task among various open issues. Selecting
an appropriate starter task requires newcomers to identify the
skills needed to solve a project issue and avoiding tasks too
far from their skill set. However, little is known about how
effective newcomers are in identifying the skills needed to resolve
an issue. We asked 154 undergrad students to evaluate issues
from OSS projects and infer the skills needed to contribute.
Students reported a total of 94 skills, which we classified into
10 categories. We compared the students’ answers to those
collected from 6 professional developers. In general, students
misidentified and missed several skills (f-measure=0.37). Students
had results closer to professional developers for skills related to
database, operating infrastructure, programming concepts, and
programming language, and they had worse results in identifying
skills related to debugging and program comprehension. Our
results can help educators who seek to use OSS as part of their
courses and OSS communities that want to label newcomer-
friendly issues to facilitate onboarding of new contributors.

Index Terms—Open-source software, Newcomers, Skills, Ex-
pertise.

I. INTRODUCTION

To provide students experience with real software develop-

ment problems, educators are increasingly using Open Source

Software (OSS) projects as a training ground [1]–[4]. There

are many OSS projects to choose from, ranging in different

domains, sizes, and complexity [5], [6], giving educators a

wide range of projects to train their students on. Such use

of OSS as a training ground allows students to not only

learn real-world technical skills but also learn about team

communication, communication styles, and attitudes, which

might, in turn, increase their confidence when applying for

industry jobs [2], [7]–[9]. Successful participation in OSS

projects also helps (student) newcomers gain visibility among

their peers [10], [11], benefit society by developing a product

used by many users [12], and have a higher chance to achieve

professional success [11], [13], [14].

However, newcomers face a plethora of challenges [15],

including choosing a task to start contributing [16], [17].

Newcomers are expected to be able to find a task on their

own that they can complete. They have to figure out which

task is appropriate from a set of open issues that require

different skills and are of varying complexity. However, it

is not easy to infer the skills (or expertise) required for a

task solely from the task description. And very few projects

annotate tasks to signal their appropriateness for newcomers.

Skills in this context can represent technical knowledge or

knowledge about the contribution process. When the gap

between newcomers’ skills and those needed to accomplish

the task is too wide, it demotivates them causing them to

dropout [16], [18], [19]. This particularly impacts students,

who typically have a limited skill set and experience when

first contributing to an OSS project.

So far, little is known about how effective (newcomer)

students are in identifying the skills needed to resolve an issue

based only on the information available on the issue tracker.

In this paper, we seek to understand how effective students are

in identifying the skills needed to work on an issue through

the following research questions:

RQ.1: How similar are the skills identified by students

and professional developers when analyzing OSS issues?

RQ.2: Which types of skills are students capable of iden-

tifying?

To answer these research questions, we tasked 154 under-

graduate students to evaluate issues from 47 OSS projects

and report which skills they considered necessary to close

the issue. We recruited six professional software developers to

assess the issues reported by the students. Then, we compared

professional and students’ responses using traditional informa-

tion retrieval measures: recall, precision, and F-measure.

Our contributions in this paper include:

• characterization of how capable students are in identify-

ing skills needed to work on OSS issues as compared to

professional developers;

• identification and classification of a set of 94 skills into

10 higher-level categories;

• identification of the categories of skills where students are

better (e.g., database, operating infrastructure, program-

ming concepts, and programming language) or worse

(e.g., debugging and program comprehension);

These results are particularly relevant for educators who

use OSS in their courses, OSS communities that want to

174

2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

978-1-6654-3786-8/22/$31.00 ©2022 IEEE
DOI 10.1109/SANER53432.2022.00032

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

An
al

ys
is,

 E
vo

lu
tio

n
an

d
Re

en
gi

ne
er

in
g

(S
AN

ER
) |

 9
78

-1
-6

65
4-

37
86

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SA

N
ER

53
43

2.
20

22
.0

00
32

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:40:33 UTC from IEEE Xplore. Restrictions apply.

label the issues to facilitate new contributors’ onboarding, and

researchers who aim to propose technical approaches to help

identify skills in issues.

II. RELATED WORK

OSS in education: Bringing OSS projects into the context

of a classroom has been studied from diverse perspectives [6],

[8], [20]. Smith et al. [20] reported the search for suitable

OSS projects to teach an introductory SE course with a focus

on maintenance and evolution. Morgan and Jensen [8] detailed

the experience of teaching a SE course based on OSS projects.

Their work compares and contrasts two different models

and discusses the outcomes, lessons learned, and guidance

to those developing their courses on this topic. Pinto et al.

investigate the benefits, challenges, and opportunities from

the professor’s [3] and student’s [2] perspectives. With our

work, we want to understand the difficulty newcomers have

in identifying skills from OSS task descriptions in the issue

tracker, which is a critical part of the contribution process.

Onboarding newcomers: A newcomer is a developer try-

ing to place their first code contributions into the project [21].

Newcomers often face hostile and unfamiliar landscapes when

onboarding to an OSS project. According to Fogel [22], if

a project does not make a good first impression, newcomers

may wait a long time before giving it a second chance. This is

especially pertinent for most students in software engineering

classes as they are still novices and are developing their skills.

Newcomers need proper orientation to navigate the project and

correctly make a contributions [23]. Motivating, engaging, and

retaining new developers in a project is essential to sustain a

healthy OSS community [24]. Dagenais et al. [25] compare

newcomers to explorers in a hostile environment where they

need to self-guide through the tasks and obstacles in OSS.

Several empirical studies have focused on how newcomers

join community-based OSS projects [17], [19], [21], [26],

[27]. Other works have focused on understanding the barriers

that influence newcomers’ onboarding experiences [16], [28].

Developers indicated that the lack of awareness and guidance

during their first steps (setup and choosing the right starter

task) discouraged further contributions in OSS projects [29].

Researchers [16], [18], [30] have reported problems associated

with the “difficulty to find a task to start with.” Being able

to identifying the right skills required to work on an issue

can help newcomers find the right task and be successful

in their first contribution. Our work investigates this topic

deeper, identifying to what extent students can identify skills

as compared to professional developers.

Skill identification: In our context, a skill is the knowledge

needed for a newcomer to solve a task in an OSS project.

Identifying skills is important ti choose a task [16], [19]. Some

studies propose solutions to support task selection, including

automated recommendation systems [31], [32]. Anvik and

Murphy [31] use machine learning in the project history

to recommend the expert for a given artifact. Macdonald

and Ounis [32] apply data fusion techniques using a voting

heuristic-based approach to analyze the change history of

artifacts related to a task. Balasubramanyan et al. [33] propose

a search tool called DebugAdvisor, which allows users to

search through software repositories to recommend developers

based on expertise on the source code related to the task. Costa

et al. [34] identify the expert most suited to merge changes

based on past work. However, these systems only suggest tasks

to developers who have previous interactions in the project,

and thus cannot support newcomers. Newcomers would need

additional help to choose an appropriate set of tasks. Research

thus far has not focused on models that articulate the skills

necessary to contribute to an OSS project or on how to model

skill acquisition trajectories.

Other studies focused on tools to support newcomers’

onboarding. Čubranić et al. [35], for example, developed a tool

called Hipikat used to assist newcomers by building a group

memory and recommending source code, mail messages, and

bug reports. Park and Jensen [17] showed that visualization

tools could support the first steps of newcomers to OSS

projects, helping them to find information more quickly. Wang

and Sarma [19] created an approach to enable newcomers

explore the socio-technical dependencies and the resources

needed to fix a bug by providing information about similar past

bugs. Steinmacher et al. [23] proposed and evaluated FLOSS-

coach, a web portal created to support the first contributions of

newcomers to OSS projects. Results indicate that FLOSScoach

played an important role in guiding newcomers and in lower-

ing barriers related to the orientation and contribution process,

whereas it was not effective in lowering technical barriers.

To complement the existing literature, in our work, we

investigate how accurate are newcomer students in identifying

skills from open source issues (as compared to professional

developers) and indicate the skills categories that newcomers

have more difficulty in identifying.

III. RESEARCH METHOD

We answer the research questions in this paper (see Sec-

tion I) through the following set of five activities, as illustrated

in Figure 1. In this study, we focus on undergraduate students,

as educators have been using OSS to train students and

these students are potential OSS project contributors [23]. In

fact, multiple programs (e.g., Google Summer of Code [36],

Facebook Open Academy) focus on attracting students to open

source.

Activity 1 - Identification of skills by students. We recruited

154 undergraduate students who were junior or senior and had

sufficient knowledge to fix bugs in software projects. They

were enrolled in four different editions of software engineering

courses from two different universities between 2016 and

2019. We asked the students to choose any OSS project from

OpenHub1 and select one issue. In total, the 154 students chose

a variety of 47 OSS projects. After they selected the project

and an issue, we asked them an open question: “Based only

on the description of the issue and your knowledge about the

1https://www.openhub.net/

175

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:40:33 UTC from IEEE Xplore. Restrictions apply.

Activity 5:
Open Questions

Analysis

Activity 1:
Identifying

Skills

Activity 2:
Qualitative

Analysis

Activity 3:
Professionals
Classification

Methodology

Activity 4:
Skill

Matching

- Extraction of Skills
from GitHub issues
(Newcomers view)

- Code newcomers’
responses

- Grouped into upper
categories

- Extraction of Skills
from GitHub issues

(Professionals view)

- Comparison of Skills
(Newcomers x
Professionals)

- Survey to collect
insights

from professionals

Figure 1. Research method overview.

project, what skills do you believe are necessary to solve the

issue?”

Activity 2 - Qualitative analysis of skills: Based on the

answers from Activity 1, we performed a qualitative analysis

of the skills reported by the students. Before our analysis, we

cleaned the data to remove invalid responses. We removed

seven responses from the dataset because they either: (i) did

not provide clear information about the skills required to solve

the issue (4 responses), e.g. “This bug is very complex and a
large team is required to fix it.”; or (ii) they were empty (3

responses). In the end, we received 147 valid responses that

correspond to 131 different OSS issues. The issues and the

responses are available in the supplementary material2.

The analysis process started by selecting a random sample

of issues in the dataset, and two of the authors independently

coded the students’ responses and grouped them into higher-

level categories, following the open coding procedure [37].

The researchers evaluated a small set of responses, then

compared and discussed the labels, to establish a common

understanding. After three rounds of labeling and discussion

the researchers independently categorized the 147 responses

and got an agreement of 92.3%. The disagreements were

individually discussed until finding consensus.

Then, we grouped the skills identified in the higher level

categories. For example, we grouped skills such as, C, C++,

Java, Python as “programming language”. In total, we identi-

fied 94 different skills and categorized them into the following

10 categories: database, debugging, external libraries, oper-

ating infrastructure, program comprehension, programming

concepts, programming language, project architecture, project-

specific concepts, and testing.

Activity 3 - Identification of skills by professionals: In this

step, we provided to professionals the same issues analyzed by

the students and asked them to identify the skills required to

solve the issues. We asked the professionals to evaluate only

2https://zenodo.org/record/5574248#.YXC ytnMJb8

the projects/issues in which they had confidence or had worked

in the past. Afterwards, we asked professionals to assess the

students’ responses and fill out a form to provide feedback

about the analysis performed.

We recruited 6 professionals, from well-established and

widely-used OSS projects, who had at least two years of

experience. To recruit the professionals, we first searched for

contributors who worked on the projects related to the issues

chosen by the students. After a professional completed the

study task, we asked them to recommend another qualified

OSS contributor for us to contact. All of the professionals

received a gift card as a token of appreciation for their

participation.

The participants represent diverse OSS projects and have

distinct backgrounds. As shown in Table I, the professionals

who participated in our study had on average more than ten

years of experience with software development and expertise

with languages such as Java, JavaScript, Python, R, Lua, C,

SQL, Delphi, Cobol, Pascal, among others. All the profession-

als had experience contributing to OSS projects (e.g., JabRef,

Linux Kernel, Smatch, Dolphin emulator, Burger, Audacity).

We also asked them their area of expertise. Responses show

a diverse range of knowledge within the software develop-

ment spectrum (e.g., programming, management, software

testing, software architecture/design, software optimization,

static analysis, debugging, reverse-engineering, and databases).

Activity 4 - Skill matching: To evaluate the skills identified

by students, we compared them with the professionals’ re-

sponses. To this end, we used traditional information retrieval

measures: recall, precision, and F-measure [38]. To calculate

these metrics we considered the data from the professionals

as our ground truth.

Recall and precision enable us to evaluate the matches

between the skills identified by students and our ground truth

(i.e., professionals’ responses). If the precision is low, the skills

reported by students present many false positives. If the recall

176

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:40:33 UTC from IEEE Xplore. Restrictions apply.

Table I
PROFESSIONALS DEMOGRAPHICS

ID Gender Age Educational Level Years of Experience OSS Project Professionals ExpertiseOSS Industry Role Name
P1 M 41-50 Bachelor 19 19 Developer Linux Kernel, Smatch Linux kernel, static analysis

P2 M 20-25 Bachelor 4 6 Developer JavaScript
Software architecture/design,

Software optimization, Testing

P3 M Above 50 MSc degree 3 30 Contributor JabRef, NAU-OSL Programming, Databases

P4 M 20-25 Bachelor 6 8 Contributor
Dolphin emulator,

Burger (reverse-engineering tool)
Programming, Debugging,

Reverse-engineering

P5 M 31-40 Bachelor 2 12 Tech Lead Audacity Programming, Technical management

P6 M 26-30 Bachelor 2 6 Developer JabRef, NAU-OSL Programming, Leading, Testing

is low, there are too many false negatives. The F-measure is

the harmonic mean of precision and recall. We calculate the

F-measure using the following formula:

F −measure = 2 ∗ Precision ∗Recall

Precision+Recall

Activity 5 - Open questions analysis: To collect insights

about how professionals identified the skills, we asked them

the following questions:

1) How did you choose tasks that fit your expertise?

2) What advice do you recommend for newcomers when

they have to identify skills from GitHub issues? What

information should they look at?

3) How did you identify the skills from GitHub issues?

4) Which issues from the categories defined in our research

do you think are more difficult to identify?

The data gathered in the survey was quantitatively and

qualitatively analyzed. Each survey response was analyzed by

one author and reviewed by the other authors. We grouped

the professionals’ responses into main topics, applying open

coding to classify and gain insights about how professionals

identified skills from issue descriptions.

IV. RESULTS

In this section we present the results of our study, answering

the RQs and presenting the analysis of the feedback from the

professional developers.

A. RQ.1. How similar are the skills identified by students and
professional developers when analyzing OSS issues?

Our data shows that students identify skills with a precision

of 36% and recall of 38%. We can observe from these results

that the students’ provide a non-negligible number of false

negatives and positives. These results show that students have

a hard time identifying the skills in OSS issues.

Additionally, we calculated the Hamming loss3 metric to

measure the fraction of the wrong skills identified as compared

to the total number of identified skills. Hamming loss metric

has been originally used to evaluate text classification algo-

rithms. It calculates the average number of times a label in the

test set is incorrectly classified, including cases where an event

(here skill) is missing its correct label (e.g., debugging) or if

3https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
hamming loss.html

1
2

3
4

5

Developers

Professional
Newcomer

Figure 2. Distribution of skills categories.

an instance has been incorrectly associated with a “wrong”

label (e.g., database) [39]. The smaller the value of Hamming

loss, the greater the similarity between the two label sets and

the better the classification performance. The hamming loss

metric results show that students incorrectly identified 21% of

the skills.

We then calculated the exact match ratio, which is a

strict measure of the classification performance—counting the

number of issues that have exact label matches (with no false

positives or false negatives). A drawback of this measure is

that is does not consider issues with partially correct labels,

which in our case would result if students identified only

one skill opposed to two skills identified by professionals.

In our case, the exact match rate was 10% (15 issues out

of 148). We compare the distribution of the number of skills

identified by students and professionals per issue. We present

the distribution using the violin plot in Figure 2.

Our results also show that in 73 issues (49% of our data set),

students had not been able to identify any correct skills. These

results highlight the severe challenge that students face when

trying to identify the skills needed to solve an issue. We also

have a higher number of false positives (162 occurrences on

22 issues) that occurred when students report incorrect skills.

This means that students may misjudge their ability to solve an

issue if they incorrectly identify the skill needed, and become

frustrated or disillusioned when trying to solve the issue when

they do not possess the skills needed for the task. Students

177

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:40:33 UTC from IEEE Xplore. Restrictions apply.

also had false negatives (148 occurrences on 17 issues), that

is, cases where students did not identify skills reported by the

professional.

RQ.1 Summary. Students’ overall performance compared

to professionals’ is subpar. They achieved low results—

precision (36%), recall (38%), and hamming loss (21%)—

in correctly identifying the skills needed to complete an

issue in OSS projects.

B. RQ.2 - Which types of skills are students capable of
identifying?

Students identified 94 different types of skills further clas-

sified into 10 categories (see Table II).

The skill categories that were most frequently reported

by students were operating infrastructure (25 instances) and

programming concepts (22 instances). Other skills mentioned

by students comprise the knowledge required about program-
ming languages (10 instances) to start contributing to an OSS

project and program comprehension (5 instances) to help in the

understanding of the code, how it behaves, and how the student

can assist in the project evolution. The need to understand the

project was also pointed out by students when they identified

skills related to project architecture (8 instances) and project-
specific concepts (5 instances). Other skills categories related

to testing (3 instances) and debugging (2 instances) were

reported as relevant skills in solving specific types of issues.

Finally, skills regarding how to use databases (3 instances)

to manage OSS project data and how to leverage external
libraries (9 instances) to improve software performance were

also mentioned.

We also calculated the frequency with which issues were

tagged with skill categories (Figure 3). As per the students,

there were 56 times when issues were tagged with “pro-

gramming language” skills and 55 times with “operating in-

frastructure” skills. While compared with professionals’ view,

the most frequent skill categories are programming concepts
(77 times), programming languages (60 times), and operating
infrastructure (55 times). Therefore, we posit that students

who want to contribute to OSS projects should know the

programming concepts and programming language in which

the project was built, and learn some aspects that involve the

environment in which the software was developed.

Table III presents the results from precision and recall

grouped by skill category. For instance, professionals identified

26 issues in the database category, whereas students identified

8 issues, out of which only 6 were correct, as shown in the

correct column. Five categories show zero responses (e.g., ex-

ternal libraries, program comprehension, project architecture,

project specific concepts, and testing); this happened because

even if the student identified an issue from one of those

categories, their response was incorrect when compared with

the same response from the professional. For example, in the

project architecture category, professionals indicated that only

1 issue in our data set is related to this category compared with

students’ responses that show 27 issues from that category.

None of the issues indicated by students in this category are

correct when compared to professionals’ classification.

In general, our results indicate that students do not perform

well in identifying skills from issues in OSS projects. The re-

sults precision of the classification varied between 0.12 to 0.75

and recall between 0.50 to 0.58. The categories where students

had better success were: database, operating infrastructure,
programming concepts, and programming language. However,

our manual evaluation of the issues in these categories revealed

that these issues had explicit mentions to concepts related

to databases (e.g., MySQL, tables, columns), the software

environment necessary to develop the software (e.g., operating

systems, git), or explicitly mentioned specific programming

concepts (e.g., object orientation, data structures) or the spe-

cific programming language used to build the software (e.g.,

Java, PHP, Python).

Our results show that students have difficulty in identifying

issues in the categories of debugging and program comprehen-
sion. These categories highlight software analysis concepts to

detect and remove possible bugs and skills related to software

behavior (e.g., code comprehension, static analysis).

We did not have sufficient data on issues related to the

following five categories: external libraries, program compre-

hension, project architecture, project-specific concepts, and

testing). However, our data shows that students often incor-

rectly identify skills from these categories. For example, in

an issue from MySQL4 project, the student identified the skill

required as “testing”, but the professional identified the skills

of database and programming concepts (and did not mention

testing).

RQ.2 Summary. Our results suggest that students do not

perform well in identifying skills from issues in OSS

projects. Their responses frequently diverge from profes-

sionals. Students were better able to identify skills about:

database, operating infrastructure, programming concepts,
and programming language, and worse about debugging
and program comprehension.

C. Professionals feedback

After we asked the professionals to identify skills in the

same issues that the students analyzed, we also asked them to

complete a survey to get their feedback about their experience

in selecting tasks to work on. We discuss their responses next.

Task Selection. Professionals answered the survey question:

How do you choose tasks that fit your expertise? Table IV

presents their responses. Professionals reported that they select

issues that are related to the programming language they are

conformable with. As mentioned by P2, “I selected projects
that utilize the languages I know best.”

However, professionals also tend to select issues that rep-

resent an exciting challenge to improve and hone their skills.

4https://bugs.mysql.com/bug.php?id=24762

178

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:40:33 UTC from IEEE Xplore. Restrictions apply.

Table II
SKILLS MODELLING CATEGORIES

Skills
Total Categories Definition Examples

3 Database
A collection of data stored and accessed
electronically from a computer system.

MySQL, RQG tests, SQL

2 Debugging
Process of finding and resolving
defects or problems within a computer program.

Code tracing, Reproduce the bug

9
External
Libraries

Related to the libraries used by the software
or in the development process.

DX10, DX11, ggit-1.0 library, glib-2.0 library, Gravatar, GTK.ScrolledWindow,
GTK+, GTKBuilder, Libmetis libraries, Redshift GTK

25
Operating

infrastructure

Related to aspects that involve hardware and
software environment in which the software
will run as well as installation and deployment.

Apache server, Compilers, Deployment, Git, GNOME, Hardware components, HTTP
protocols, Input/Output, Installation, Internet of things, Linux, Linux Kernals
security’s common capability, Mac OS X, Memory (comsuption, handling, mapping
input/output), Network, NPROC, Operating systems design, Preloaded Public Key
Pinning, Runtime monitoring, Security, Software backup files, Ubuntu, wxGTK 3.0x

5
Program

comprehension
It is the activity of understanding software
code and its behavior.

Code comprehension, Code parsing, Ohloh analysis, Software analysis, Static analysis

22
Programming

concepts
Knowledge related to specific areas of the
programming discipline.

Button, Concurrency, Error handling, Files handling, Graphics design, Graphics
programming, Image processing, Menu, Modal dialog, Object Orientation, Parser,
Privacy, Reactive, Shortcuts, String handling, Threads, Tooltip, UI coding, Unicode,
Usability, Video programming, Web programming

10
Programming

language
A formal language comprising a set of instructions
that produce various kinds of output.

C, C++, HTML & CSS, Java, Javascript, PHP, Python, Vala, XML

8
Project

architecture
Describe the aspects of how the project is
built and implemented.

Adopted Design patterns, Architecture, Browser interaction with plugins, Project
component: input data, Configuration files, External packages, Level of customer
service, Project structure

5
Project specific

concepts
Information related to the domain, the documentation
and other artifacts used in the software.

GIMP project, GUI Facebook, Project UI, Pygame project, VLC documentation

3 Testing Related to techniques and methods to test the software. Diagnostics tests, Testing environment, Unit testing

Figure 3. Frequency of skills categories (students and professionals).

P4 mentioned that “I look at a feed of new issues, and if I see
something interesting, then I look into it further.”

Recommendations to newcomers. We use the responses

to questions: What advice do you recommend for newcomers,
when they have to identify skills from GitHub issues? and

What information should they look at? helped collect pro-

fessionals’ recommendations for newcomers (see Table V).

Most professionals recommend reading the issues carefully,

paying particular attention to the issue title, description, and

possible labels to gather any new information about the issue

(mentioned by P3, P4, P5, P6). P3 said: “read and comprehend
title and description, search for familiar terms or sentences.

Look at the possible tags that other members have given the
issue.”

They also recommended reading in detail the README

file to understand how the project works (P3). Another pro-

fessional (P5) recommend looking for issue tags used in the

project: “Search for ‘good first issue’ tag! That is what GitHub
recommends itself.”

Identifying skills from issues. We collected this data from

participant responses to the question: How did you identify the
skills from GitHub issues? (see Table VI). Professionals follow

different approaches to identify the skills from GitHub issues,

but they have some commonalities. Professionals mentioned

that they would look into the title, description, comments, and

179

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:40:33 UTC from IEEE Xplore. Restrictions apply.

Table III
SKILLS CATEGORIES CORRECTLY IDENTIFIED BY STUDENTS

Categories # of identified skills Precision Recall F-measureP S Correct
Database 26 8 6 0.75 0.23 0.35

Debugging 6 24 3 0.12 0.5 0.19

External
Libraries

1 10 0 0 0 0

Operating
infrastructure

55 48 32 0.66 0.58 0.61

Program
comprehension

4 28 1 0.03 0 0

Programming
concepts

79 28 18 0.64 0.22 0.32

Programming
language

64 60 34 0.56 0.53 0.54

Project
architecture

1 27 0 0 0 0

Project specific
concepts

11 13 0 0 0 0

Testing 0 4 0 0 0 0

Legend: P = Professionals, S = Students

Table IV
STRATEGIES TO IDENTIFY TASK WITH PROFESSIONALS EXPERTISE

ID Strategy
P1, P2, P3 Selected projects that use specific programming languages.

P4, P5, P6 Search for issues exciting and challenging.

labels of the issues and try to reproduce the issue to evaluate

the cause of the bug and from that gauge if they have the

required expertise (mentioned by P2, P3, P4, P5, P6).

Some professionals mentioned that they would look for

certain keywords to identify the skills. With that information,

they then attempt to identify the issue type, the time needed

to solve it, and assess if they have the required knowledge. As

mentioned by P3, “I look for keywords like languages, possible
components, classes, and tools that are possibly required to
solve the issue. Using these keywords, I try to identify the type
of the issue, how long to solve it and whether or not I can
do it with my knowledge. Next, I read some documentation to
verify how to contribute and install the app. Finally, doing this
I install the app to verify the reproducibility of the environment
and the problem in my machine.”

Skills that are difficult to identify. Table VII collates the

responses to the question: Which issues from the categories
defined in our research, do you think are more difficult to
identify? Professionals mentioned that they found it difficult

to identify issues from the following categories: (i) operating

infrastructures (P1, P2, P3); (ii) program comprehension (P2,

P3); (iii) project specific concepts (P3, P4, P5); (iv) external

Table V
ADVICE TO NEWCOMERS TO IDENTIFY ISSUES FROM ISSUES

ID Recommendation
P1, P3, P6 Read project documentation (e.g., README file).

P2 Try to make small contributions.

P2 Be aware of your motivation for the chosen project.

P3, P4, P5, P6 Read the labels, tags, titles, and descriptions of the issues.

P5
Search for tags indicated for the newcomers
(e.g., good first issue tag).

Table VI
STRATEGIES TO IDENTIFY SKILLS FROM ISSUES

ID Recommendation
P1 Contact people experienced in the project.

P2, P3, P4,
P5, P6

Read the issue (e.g., title, description, comments) to measure
the impact and complexity.

P3, P5
Read the project documentation and try to reproduce
the issue reported.

libraries (P3, P4, P6); (v) programming concepts (P4); (vi)

testing (P4); and (vii) project architecture (P5, P6).

As observed by P2: “Operating infrastructure and program
comprehension. Both of those can be more difficult to discern
from a GitHub issue due to the amount of work involved to
understand what needs to be done. The rest seem to be pretty
clear through reading the description of the issues”, and, as

mentioned by P1 “The most tricky problems are the ones where
two Operating Infrastructures interact and both sides blame
the other.”

We observe that some of these categories of skills are the

ones where students had more difficulty as well. It points

to new research direction on how to make the skills from

those categories easier to identify for professionals as well as

newcomers.

Table VII
SKILLS CATEGORIES DIFFICULT FOR PROFESSIONALS TO IDENTIFY

ID Recommendation
P1, P2, P3 Operating Infrastructures

P2, P3 Program comprehension

P3, P4, P5 Project specific concepts

P3, P4, P6 External Libraries

P4 Programming concepts

P4 Testing

P5, P6 Project architecture

V. DISCUSSION

Contributing to OSS requires different types of skills, where

the skills could pertain to technical knowledge or knowledge

about OSS processes. Technical knowledge can encompass

knowledge about specific programming concepts (e.g., inher-

itance or event handling), language-specific constructs (e.g.,

Java Annotations, Java Collections), frameworks or API usage

(e.g., Maven, Node.js), or project-specific concepts (e.g., code

functionality, specific classes or methods). Additionally, new-

comers may also need knowledge about tooling for specific

development life cycles (e.g., build management or DevOps).

Our results show 10 main categories of skills needed to

work on OSS issues. The categories that appeared more

frequently included skills related to programming language
and operating infrastructure. This is expected as newcomers

need to know on how to program using the programming

language used in the project. However, to make a successful

contribution, it is not enough to just have programming skills.

Newcomers also need to understand the different components

and tools of the operating infrastructure. As reported by

Steinmacher et al. [15], setting up the workspace is one of

180

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:40:33 UTC from IEEE Xplore. Restrictions apply.

the most recurrent barriers faced by newcomers. The initial

setup of the development environment requires specific skills

such as knowledge on server configuration, operating systems,

hardware, and network protocols.

In the following, we discuss possible research directions that

emerged from our results, related literature, and implications.

Implications for educators. Using OSS contributions as part

of Software Engineering courses is becoming more common.

Having students contribute to open source as part of their

training is a win win for the students as well as OSS projects.

Contributing to a real project gives students valuable real-life

experience and allows them to add this experience to their

resume. For OSS projects, students participation provides an

opportunity to recruit new contributors.

However, it is difficult for newcomers to figure out whether

they have the right skills to contribute to a project and even

after selecting a project, it is not easy to identify what can

be an appropriate issue to resolve. If there is a mismatch

between the skills required to resolve an issue and that which

the student possesses, it can discourage and demotivate them

from making future OSS contributions.

Our results highlight that students have difficulty in identi-

fying skills from issues in OSS projects. Students in our study

were better able to identify skills related to database, operat-

ing infrastructure, programming concepts, and programming

language; and had difficulty in identifying skills related to

debugging and program comprehension.

This suggests that although students had been trained in

software engineering, they require additional training in un-

derstanding how large, real-life projects work and how their

code is structured. We posit that students might also need

further training in how live projects use debugging tools.

testing infrastructure, and DevOps technology, as these were

skills that students had difficulty identifying.

Our study has provided a classification of different skills

required to contribute to OSS. Educators can use this classifi-

cation, as well as the lower-level skills identified in the paper,

to verify that students are being appropriately trained in these

areas to better prepare them for industry.

Educators should also consider how to better scaffold the

introduction of students to OSS. The professionals in our

study recommended specific guidelines on how to identify the

skills required for a task, a key part of which is to reproduce

an issue. A systematic guideline of how to select an issue,

including different ways to reproduce an issue would help

students get a deeper understanding of the issue and the project

characteristics

Finally, contributing to OSS projects can be high-risk, as

contributions and communication are public and persistent.

Making a contribution to a large, active project provides a

great experience, but can also be stressful, especially for those

who have low computer self-efficacy and whose first language

is not English. Educators can curate a set of OSS projects

that different universities can use to train their students. These

projects need to be sufficiently large, but not too complex

and include programming language and software engineering

technology that is being taught in universities. It is possible

that universities open source their capstone projects, which can

then accept contributions from more junior students, who can

be mentored by the senior students.

Implications for research. Understanding how newcomers

identify skills in OSS projects highlights diverse research

opportunities. Our results showed which categories were stu-

dents are better (e.g., database, operating infrastructure, pro-

gramming concepts, and programming language) and which

skills they have difficulty identifying (e.g., debugging, program

comprehension). This result points to research directions on

how we can improve newcomers’ ability to identify skills from

OSS issues and investigate what makes it difficult for students

to identify the skills.

Given the difficulty in identifying skills by newcomers,

future research that is able to automatically extract and label

issues with the skills needed to complete a task would be

useful. recent work by Santos et al. [40] takes a first step

in automatically labeling the issues in an OSS project with

relevant APIs (or libraries) for that issue. Further research is

needed to automate the identification of the skills identified in

our work.

Implications for OSS communities. Academic research as

well as OSS sponsored initiatives (e.g., Up For Grabs, Mozilla,

Audacity, etc.) have identified best practices to facilitate

newcomer onboarding. One such practice is to gather and

tag issues with labels as “first good issue” or “newcomer

friendly” issue. However, simply labeling an issue with such

tags doesn’t guarantee that the issue matches the newcomer’s

skills. An issue tagged with “Newcomer friendly” label may

still involve technology or concepts that a newcomer doesn’t

possess and can be misleading. Therefore, in addition to

identifying newcomer friendly issues, contributors should also

tag such issues with the skills needed to resolve them.

For a newcomer to be able to correctly identify skills

needed in an issue, it is expected that the issue provides

enough information. According to our results, professionals

recommend that newcomers carefully read the issue details

(e.g., title, description, tags) to better understand the problem

reported and identify the issue complexity. Thus, OSS projects

should invest in improving the project description and their

contribute.md to reflect the technology used, and the skills

they expect from their contributors. The projects should also

ensure that the issue description contains sufficient details.

Our results describe how professionals identify skills from

issues. For example, professionals reproduce the issue, which

is a good practice because the attempt to reproduce the issue

can lead to a deeper understanding of the issue and project

characteristics. Thus, OSS projects should provide systematic

guidelines on how to reproduce an issue with the project

technology to help newcomers onboard. The project should

also provide guidelines (to current contributors) on how to

report issues, such that there is enough depth to the issue

description.

Finally, previous studies related to onboarding developers in

software teams have investigated how to provide customized

181

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:40:33 UTC from IEEE Xplore. Restrictions apply.

tasks to help new developers in their onboarding process [41].

This can be a good direction for OSS projects too, where

some issues could be designed to facilitate a newcomer’s

first interaction with the project, providing description of

the skills required to complete the task and mechanisms to

reproduce the error. Such “tutorial” tasks can encourage a

newcomer to easily complete their first issue helping them

become familiar with the project and its technology as well as

boosting confidence [2], [6].

VI. THREATS TO VALIDITY

We asked students to identify the skills necessary to con-

tribute to open source in various projects available on GitHub.

From the data gathered, we cannot generalize that the skills

identified represent all the skills and knowledge required to

contribute to OSS.

We collected data from professionals with different back-

grounds and continued assessing the issues until we had

100% of the total issues analyzed by students labeled. The

professionals who participated in our study have on average

more than ten years of experience with software development

and had a diverse range of knowledge within the computer

science spectrum (e.g., programming, management, software

testing, software architecture/design, software optimization,

static analysis, debugging, reverse-engineering, and databases).

To mitigate this, we asked them to fill a follow-up survey to

give us feedback about how they perform the skills identifica-

tion and provide a deeper understanding of the task completed.

Moreover, the respondents mentioned that they were confident

about the accuracy of the labels provided, when we asked them

about that.

We compare the number of skills reported by students

against the skills reported by professionals. Some of the

professionals who participated in the study have some previous

knowledge about the project analyzed. In future work, we plan

to compare professionals against students on a project that both

of them never contributed.

Data interpretation can also lead to bias. To mitigate sub-

jectivity, we employed two researchers independently coding

the answers and then we discussed and resolved any conflict.

VII. CONCLUSION

OSS projects offer students real software engineering set-

tings to learn skills. Among their characteristics, OSS projects

are available online and foster open contributions from individ-

uals who want to learn and be part of a software community.

Correctly identifying the right skills to solve an issue can

help newcomers thrive in their first attempt to contribute to an

OSS project. However, newcomers need additional information

about the tasks or support from the community to identify a

task suited to their skills. Research thus far has not focused on

models that articulate the skills necessary to contribute to an

OSS project or on how to model skill acquisition trajectories.

Therefore, in this study, we investigate what student newcom-

ers consider as skills and how their perception matches with

those of software engineering professionals.

Based on our analysis, we identified a set of 94 skills

that were classified into 10 higher-level categories. This skill

categorization can help other studies organize skills in GitHub

issues. Among the issues analyzed, the categories that had

more mentions were programming languages and operating

infrastructure.

Our results highlight that student performance is not optimal

in identifying skills from issues in our dataset of 47 OSS

projects. We also identified the skill categories where students

performed better (e.g., database, operating infrastructure, pro-

gramming concepts, and programming language) and worse

(e.g., debugging and program comprehension).

In future work, we intend to conduct observational studies

to better understand how professionals identify issues to work

on. Such an understanding will help us create a systematic pro-

cess to guide newcomers and even experienced developers in

identifying skills correctly. Further, we plan to use the results

from this study to build tools that will help in automatically

tagging issues with more accurate information about the skills

needed to resolve the issue [6]. Such skill labeling will help

newcomers identify issues that are more suited to their current

knowledge, aiding their work and bringing more newcomers

to contribute to OSS projects.

ACKNOWLEDGMENT

This work is partially supported by the National Science

Foundation under Grant numbers 1815486, 1815503, 2008089,

1900903, and 1901031, CNPq grant #313067/2020-1. We also

thank the students and professionals for their participation in

our study.

REFERENCES

[1] J. O. Silva, I. Wiese, D. M. German, C. Treude, M. A. Gerosa, and
I. Steinmacher, “Google summer of code: Student motivations and
contributions,” Journal of Systems and Software, vol. 162, p. 110487,
2020.

[2] G. Pinto, C. Ferreira, C. Souza, I. Steinmacher, and P. Meirelles,
“Training software engineers using open-source software: the students’
perspective,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering Education and Training
(ICSE-SEET). IEEE, 2019, pp. 147–157.

[3] G. H. L. Pinto, F. Figueira Filho, I. Steinmacher, and M. A. Gerosa,
“Training software engineers using open-source software: the professors’
perspective,” in 2017 IEEE 30th Conference on Software Engineering
Education and Training (CSEE&T). IEEE, 2017, pp. 117–121.

[4] C. Ferreira, C. Souza, G. Pinto, I. Steinmacher, and P. Meirelles, “When
students become contributors: leveraging oss contributions in software
engineering courses,” in Proceedings of the XXXII Brazilian Symposium
on Software Engineering, 2018, pp. 260–269.

[5] G. Von Krogh and E. Von Hippel, “Special issue on open source software
development,” 2003.

[6] A. Sarma, M. A. Gerosa, I. Steinmacher, and R. Leano, “Training
the future workforce through task curation in an oss ecosystem,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 932–935.

[7] G. Braught, J. Maccormick, J. Bowring, Q. Burke, B. Cutler, D. Gold-
schmidt, M. Krishnamoorthy, W. Turner, S. Huss-Lederman, B. Mackel-
lar et al., “A multi-institutional perspective on h/foss projects in the
computing curriculum,” ACM Transactions on Computing Education
(TOCE), vol. 18, no. 2, pp. 1–31, 2018.

[8] B. Morgan and C. Jensen, “Lessons learned from teaching open source
software development,” in IFIP International Conference on Open
Source Systems. Springer, 2014.

182

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:40:33 UTC from IEEE Xplore. Restrictions apply.

[9] D. M. Nascimento, K. Cox, T. Almeida, W. Sampaio, R. A. Bittencourt,
R. Souza, and C. Chavez, “Using open source projects in software
engineering education: A systematic mapping study,” in 2013 IEEE
Frontiers in Education Conference (FIE). IEEE, 2013, pp. 1837–1843.

[10] Y. Cai and D. Zhu, “Reputation in an open source software community:
Antecedents and impacts,” Decision Support Systems, vol. 91, pp. 103–
112, 2016.

[11] D. Riehle, “How open source is changing the software developer’s
career.” Computer, vol. 48, no. 5, pp. 51–57, 2015.

[12] E. Parra, S. Haiduc, and R. James, “Making a difference: An overview
of humanitarian free open source systems,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-
C). IEEE, 2016, pp. 731–733.

[13] G. J. Greene and B. Fischer, “Cvexplorer: Identifying candidate de-
velopers by mining and exploring their open source contributions,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, 2016, pp. 804–809.

[14] A. Capiluppi, A. Serebrenik, and L. Singer, “Assessing technical can-
didates on the social web,” IEEE software, vol. 30, no. 1, pp. 45–51,
2012.

[15] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social
barriers faced by newcomers placing their first contribution in open
source software projects,” in Proceedings of the 18th ACM conference
on Computer supported cooperative work & social computing, 2015,
pp. 1379–1392.

[16] I. Steinmacher, T. U. Conte, and M. A. Gerosa, “Understanding and
supporting the choice of an appropriate task to start with in open source
software communities,” in 2015 48th Hawaii International Conference
on System Sciences. IEEE, 2015, pp. 5299–5308.

[17] Y. Park and C. Jensen, “Beyond pretty pictures: Examining the benefits
of code visualization for open source newcomers,” in 2009 5th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis. IEEE, 2009, pp. 3–10.

[18] S. Balali, U. Annamalai, H. S. Padala, B. Trinkenreich, M. A. Gerosa,
I. Steinmacher, and A. Sarma, “Recommending tasks to newcomers in
oss projects: How do mentors handle it?” in Proceedings of the 16th
International Symposium on Open Collaboration, 2020, pp. 1–14.

[19] J. Wang and A. Sarma, “Which bug should i fix: helping new devel-
opers onboard a new project,” in Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of Software Engineering,
2011, pp. 76–79.

[20] T. M. Smith, R. McCartney, S. S. Gokhale, and L. C. Kaczmarczyk,
“Selecting open source software projects to teach software engineering,”
in Proceedings of the 45th ACM technical symposium on Computer
science education, 2014, pp. 397–402.

[21] I. Steinmacher, M. A. Gerosa, and D. Redmiles, “Attracting, onboarding,
and retaining newcomer developers in open source software projects,”
in Workshop on Global Software Development in a CSCW Perspective,
2014.

[22] K. Fogel, Producing open source software: How to run a successful free
software project. ” O’Reilly Media, Inc.”, 2005.

[23] I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa, “Overcoming
open source project entry barriers with a portal for newcomers,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
2016, pp. 273–284.

[24] I. Qureshi and Y. Fang, “Socialization in open source software projects:
A growth mixture modeling approach,” Organizational Research Meth-
ods, vol. 14, no. 1, pp. 208–238, 2011.

[25] B. Dagenais, H. Ossher, R. K. Bellamy, M. P. Robillard, and J. P.
De Vries, “Moving into a new software project landscape,” in Pro-

[28] V. Wolff-Marting, C. Hannebauer, and V. Gruhn, “Patterns for tearing
down contribution barriers to floss projects,” in 2013 IEEE 12th Inter-
national Conference on Intelligent Software Methodologies, Tools and
Techniques (SoMeT). IEEE, 2013.

ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, 2010, pp. 275–284.

[26] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is going
to mentor newcomers in open source projects?” in Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, 2012.

[27] I. Steinmacher, I. Wiese, A. P. Chaves, and M. A. Gerosa, “Why
do newcomers abandon open source software projects?” in 2013 6th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE). IEEE, 2013, pp. 25–32.

[29] I. Steinmacher, I. S. Wiese, and M. A. Gerosa, “Recommending mentors
to software project newcomers,” in 2012 Third International Workshop
on Recommendation Systems for Software Engineering (RSSE). IEEE,
2012, pp. 63–67.

[30] I. Steinmacher, S. Balali, B. Trinkenreich, M. Guizani, D. Izquierdo-
Cortazar, G. G. Cuevas Zambrano, M. A. Gerosa, and A. Sarma, “Being
a mentor in open source projects,” Journal of Internet Services and
Applications, vol. 12, no. 1, pp. 1–33, 2021.

[31] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 20, no. 3, pp.
1–35, 2011.

[32] C. Macdonald and I. Ounis, “Voting for candidates: adapting data fusion
techniques for an expert search task,” in Proceedings of the 15th ACM
international conference on Information and knowledge management,
2006, pp. 387–396.

[33] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V. Vangala,
“Debugadvisor: A recommender system for debugging,” in Proceedings
of the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software
engineering, 2009, pp. 373–382.

[34] C. Costa, J. Figueiredo, J. F. Pimentel, A. Sarma, and L. Murta,
“Recommending participants for collaborative merge sessions,” IEEE
Trans. Software Eng., vol. 47, no. 6, pp. 1198–1210, 2021.

[35] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat:
A project memory for software development,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 446–465, 2005.

[36] J. Silva, I. Wiese, D. M. German, C. Treude, M. A. Gerosa, and
I. Steinmacher, “A theory of the engagement in open source projects
via summer of code programs,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
421–431. [Online]. Available: https://doi.org/10.1145/3368089.3409724

[37] R. Hoda, J. Noble, and S. Marshall, “Developing a grounded theory to
explain the practices of self-organizing agile teams,” Empirical Software
Engineering, 2012.

[38] I. S. Wiese, J. T. Da Silva, I. Steinmacher, C. Treude, and M. A.
Gerosa, “Who is who in the mailing list? comparing six disambiguation
heuristics to identify multiple addresses of a participant,” in 2016
IEEE international conference on software maintenance and evolution
(ICSME). IEEE, 2016, pp. 345–355.

[39] F. Herrera, F. Charte, A. J. Rivera, and M. J. del Jesus, Multilabel Clas-
sification: Problem Analysis, Metrics and Techniques, 1st ed. Springer
Publishing Company, Incorporated, 2016.

[40] F. Santos, I. Wiese, B. Trinkenreich, I. Steinmacher, A. Sarma, and M. A.
Gerosa, “Can i solve it? identifying apis required to complete oss tasks,”
in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), 2021, pp. 346–257.

[41] A. Ju, H. Sajnani, S. Kelly, and K. Herzig, “A case study of onboarding
in software teams: Tasks and strategies,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 613–623.

183

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 26,2023 at 22:40:33 UTC from IEEE Xplore. Restrictions apply.

