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Abstract—Identifying expertise in a project is essential for task 

allocation, knowledge dissemination, and risk management, 
among other activities. However, keeping a detailed record of 
such expertise at class and method levels is cumbersome due to 
project size, evolution, and team turnover. Existing approaches 
that automate this task have limitations in terms of the number 
and granularity of elements that can be analyzed and the analysis 
timeframe. In this paper, we introduce a novel technique to identi-
fy expertise for a given project, package, file, class, or method by 
considering not only the total number of edits that a developer has 
made, but also the spread of their changes in an artifact over time, 
and thereby the breadth of their expertise. We use Dominoes – 
our GPU-based approach for exploratory repository analysis – for 
expertise identification over any given granularity and time peri-
od with a short processing time. We evaluated our approach 
through Apache Derby and observed that granularity and time 
can have significant influence on expertise identification.   

Keywords—expertise identification; exploratory data analysis; GPU 
computing 

I.  INTRODUCTION 
Identifying expertise in a software project is an important 

issue for task allocation, personnel hire, onboarding, and de-
velopment help, among other activities. It has been observed 
that when stuck in a task, developers often use their implicit 
knowledge of work dependencies to identify a developer who 
can help [1], or rely on their social network to find others who 
might know enough about the artifact in question [2]. In fact, 
managers often use informal processes to facilitate their team 
members to come talk to them (e.g., a manager keeping a can-
dy bowl in his office), so that they are aware of who is having 
what kinds of problems and can direct developers to each oth-
er.  However, the large scale of software development com-
bined with developer turnover can make such informal pro-
cesses in identifying expertise difficult [3]. In globally distrib-
uted software development (or in the case of open source de-
velopment), finding an expert is even more challenging. 

Software development leaves traces of development activi-
ties in the repository, which can then be used for inferring the 
expertise of developers. Existing approaches in expertise iden-
tification have used machine learning to identify expertise 
among developers based on their edit histories. These ap-
proaches have been used for supporting automated bug triaging 
(to find the appropriate developer to perform a bug fix [4]) or 
support collaboration in a team by mining relevant artifacts to a 

given change request, and recommending developers based on 
their source code changes, experience and contributions [3]. 

However, these approaches can be inefficient when large 
scale of data needs to be processed. A large software project 
may comprise thousands of files, with hundreds of developers 
making thousands of commits per month, making it difficult or 
even impossible to process this data at interactive rates. Current 
approaches often work off-line and scope the analysis to man-
age scalability, which may lead to inaccuracies in the results. 
Some of the common strategies for scoping the analysis are: 
(1) filtering the data, (2) performing coarse-grained analysis, 
and (3) overlooking evolution. 

In the first case, available tools either scope the amount of 
data that is processed or the time period over which processing 
is performed. For example, EEL [5] scopes the analysis to 
1,000 project elements when identifying expertise in a team, 
thereby restricting the application to smaller chunks of data. In 
the second case, tools often analyze data at a coarse-grain, such 
as the file level [6]. The problem of performing analysis at this 
level is that a developer may be recommended as an expert of 
the whole file, even if she only intensively worked on a small 
portion of that file. Analysis at the finer-grain (method or lines-
of-code), however, leads to scale issues. Finally, most current 
approaches, such as Expertise Recommender (ER) [7], consid-
er the entire history of the project at once to recommend ex-
perts, overlooking the fact that artifacts evolve over time and 
that developers may change their roles. Further, temporal anal-
ysis can show how expertise of a development team changes 
and whether there are artifacts that lack experts at a given mo-
ment in time.  

In this paper, we propose a novel approach for identifying 
expertise that considers not only the total number of edits over 
a given artifact, but also the spread of the change over the parts 
of it, and the time period when the change was performed. 

We analyze expertise by considering fine-grained changes 
and time frames. We organize fine-grained data extracted from 
software repositories into multiple matrices. For example, by 
extracting the lines of edited code in a file (code churn) from 
the version control repository we can reverse engineer the 
information to create a matrix of methods that were added, 
removed, or changed as part of each change set ([com-
mit|method] matrix). Similarly, we can also create a matrix of 
developers that were responsible for each commit ([develop-
er|commit] matrix). By analyzing the project we can create 
matrices that represent the composition of artifacts. For exam-We thank CNPq, CAPES, FAPERJ, and NSF (through awards: IIS-
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ple, which methods belong to which class, which classes be-
long to a package, and so on. These composition dependencies 
are then operationalized into matrices ([class|method], 
[file|class], and [package|class]). Operating over these matrices 
allows us to identify developers who are experts on an artifact 
at different levels. We can identify experts at a fine-grained 
level (e.g., methods), or at a coarser-grained level (e.g., classes, 
files, packages, or the project as a whole).  

In addition, we also analyze the breadth of changes in an 
artifact. That is, we can differentiate if a developer has exper-
tise on only a specific part of an artifact (e.g., a single method 
in a file) or has a broader experience with the artifact (e.g., 
developer has edited the majority of the files). Finally, we 
allow users to identify the time period over which expertise is 
to be calculated, as well as analyze how expertise is changing 
for a project element over time.  

We use Dominoes [8] – our GPU-based approach for effi-
cient, large-scale repository analysis – to perform our analyses. 
The parallel architecture of Graphics Processing Units (GPU) 
adopted by Dominoes allows it to process the underlying ma-
trices much faster than what can be possible with CPU pro-
cessing [9]. This allows us to analyze expertise as an interac-
tive analysis process, even for large datasets. 

We evaluated our expertise identification approach in the 
Apache Derby1 project. We chose Apache Derby since it is 
stable project, has lots of activity since the beginning, and is a 
long-lived project. When we contrast our expertise identifica-
tion technique with the usual (code) edit based approach, we 
observed that our breadth-based analysis at fine-grain yields 
different expertise results in about 28% of the project files 
(about 977 files). We also show how developer expertise in the 
Apache Derby project fluctuates over time. Finally, by running 
these analyses in GPU, we observed a boost in performance 
when compared to CPU processing.  

II. BREADTH-BASED EXPERTISE IDENTIFICATION OVER TIME 
Expertise identification has typically considered the total 

number of edits to an artifact that a developer has made, with-
out considering the location of these edits. Here, we introduce 
our approach for identifying the breadth of expertise of a de-
veloper in a project, and over time. This approach considers 
two important factors pertaining to expertise: granularity of 
analysis and time. In essence, artifacts are not atomic, and local 
expertise (in specific parts of an artifact) should be differentiat-
ed from global expertise (in the whole artifact). Moreover, as 
artifacts naturally evolve over time, the expertise of a develop-
er diminishes unless she has kept familiarity with the artifacts 
over time through her development efforts.  

A. Granuarity Matters  
Here we discuss two different strategies for calculating the 

expertise of a developer in a given artifact (e.g., file): Expertise 
of a Developer (ED) and Expertise Breadth of a Developer 
(EBD). The first one considers the entire artifact as an atomic 
element, and is vastly adopted in the literature [5], [10], [11]. 
However, to differentiate between developer expertise, we use 

                                                             
1 Derby Repository: https://github.com/apache/derby 

the Z-score in our analysis. The second approach uses the un-
derlying composition structure of the artifact (e.g., methods) to 
perform a fine-grained analysis when calculating expertise. 

Expertise of a Developer (ED): it identifies the frequency 
of changes to an artifact (e.g., file, project, etc.) by a given 
developer. Frequency of edits has long been used as a proxy 
for identifying the knowledge that a developer has about an 
artifact, typically a file [12]. The intuition is that the more 
someone has edited a file, the more working knowledge that 
person has about that file. The frequency of edits can therefore 
help answer two related questions: (1) who is the developer 
that is an expert for a given file?, and (2) which files is a given 
developer an expert of?  

 Table I presents a scenario with three developers who have 
worked on three files ([developer|file] matrix – DF for short). 
Note we arrive at the DF matrix by operating over the basic 
tiles ([developer|commit] x [commit|file]). The cells in the 
derived matrix DF represent the number of times a developer 
𝑑! edited a file 𝑓!. Besides that, Table I also shows the number 
of commits performed by each developer (note that it is differ-
ent from summing all columns in a row, as a commit could 
comprise more than one file). 

TABLE I. DEVELOPER X FILE 

Project FileA.java FileB.java FileC.java Total Commits 

Alice 14 2 20 28 

Carlos 10 24 12 25 

Bob 25 10 8 40 

To answer the first expertise question (who is an expert for 
a given file 𝑓!), we search for the developers who edited the 
file the most. This is done by scanning down the column of 𝑓! 
in the DF matrix. In our simplistic example (see Table I), if we 
want to identify an expert for FileC.java, we would indicate 
Alice. Carlos would be considered as the second most knowl-
edgeable developer in that file.  

To answer our second question, about the expertise of a 
specific developer 𝑑!, we scan the rows in the matrix for the 
highest values. In our example, we find that Alice has expertise 
in FileC.java, Carlos in FileB.java, and Bob in FileA.java.  

A key challenge in this approach is identifying the right 
threshold to use. For example, is there a minimum number of 
changes that a developer must have performed before they can 
be considered as an expert? Further, if two developers have 
changed the file, how do we determine who can be defined as 
“the” expert – should that be the person with the most edits? 
For example, if we are going to compare the expertise of Alice 
versus Carlos on FileA.java, because Alice has made four more 
changes than Carlos, does Alice clearly have more expertise 
than Carlos? Does a difference of four additional edits matter, 
or should there be a minimum distance between the numbers of 
edits to differentiate expertise among developers?  

To overcome this challenge, we applied the Standard (Z) 
Score [13] to statistically identify the appropriate thresholds. 
We convert the absolute scores (support) into Z-scores accord-
ing to Equation 1. In this specific case, 𝑥 is the absolute score 

410

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:19:57 UTC from IEEE Xplore.  Restrictions apply. 



 

in Table I and µμ and σ are the mean and standard deviation of 
the number of edits for each file, respectively. 

𝑧 =
(𝑥 − 𝜇)
𝜎

 (1) 

When using standard (Z) scores (see Table II), cells above 
zero indicate values that are above the mean, that is, they indi-
cate that a developer has changed that file more than the mean 
number of times that file has been changed in the project. Simi-
larly, cells below zero indicate values below the mean. Moreo-
ver, cells above (or below) one, two, or three indicate values 
above (or below) one, two, or three standard deviations from 
the mean, respectively. For example, when we consider 
FileC.java, we see that it has been changed on average 13.33 
times (summing column 3 in Table I and dividing by the total 
number of developers in the project), and that Alice has edited 
the file 1.34 standard deviations above the mean (Table II, cell 
value for Alice’s edits to FileC.java). 

TABLE II. STANDARD SCORE 

Project FileA.java FileB.java FileC.java 
Alice -0.37 -1.10 1.34 

Carlos -1.00 1.32 -0.27 
Bob 1.37 -0.22 -1.07 

We assume zero as the threshold for determining expertise. 
That is, to be counted as an expert of a file a developer must 
have edited more than the mean change rate of that file. In our 
example, this measure enables us to quickly identify the expert 
developer for each of the files. Alice can be considered an 
expert in FileC.java, since she has made significantly more 
changes than any other developer in the project. Similarly, Bob 
is an expert in FileA.java, and Carlos in FileB.java. To be 
considered a higher expert than another, we require that the 
developer has to have edits that are at least one standard devia-
tion higher.  

Expertise Breadth of a Developer (EBD): Here we chal-
lenge the assumption that a developer who has more commits 
to a file has knowledge of the (entire) file. Normally, a file 
comprises of a set of classes and methods and it is possible that 
a developer only performed niche changes to a subset of meth-
ods or internal classes. In such cases, numerous edits to only a 
subpart of the file does not guarantee that the developer is an 
expert on the entire file. We, therefore, analyze changes at 
different levels of granularity to create a more nuanced under-
standing of expertise.  

To calculate EBD we run an analysis at a fine grain. In our 
case study, we analyzed edits at the method level (however, in 
our approach it is also possible to analyze expertise at the lines-
of-code level, if needed). We first calculate the absolute scores 
(count of number of edits to the [developer|method] matrix – 
DM for short – which is computed as [developer|commit] x 
[commit|methods]). We then transform the absolute scores into 
standard (Z) score. Finally, using zero as a threshold, we count 
the cells that have positive numbers as a measure of expertise.  

As an example, consider Table III (DM matrix), which is 
composed of methods present in FileC.java and the number of 
commits performed by each developer, which involved those 
methods. Table IV presents the Z-score calculated from Table 

III. In this example, it is possible to see that even though Alice 
has edited FileC.java the most (20 times) and therefore had the 
highest ED for this file (Table I), most change she has made 
were only to a single method in the file. In contrast, Carlos has 
made only 12 changes (as compared to 20 by Alice), but his 
changes are spread across all the methods in the file. Therefore, 
based on our proposed metric, Carlos has a higher EBD in 
FileC.java (in Table IV Carlos has positive entries for three 
methods). If we now look at the expertise of developers in the 
project that comprises these three files, we find that Carlos is 
the expert in FileC.java and Alice in FileA.java. Carlos and 
Bob both have expertise in FileB.java, although Carlos has a 
higher expertise (see Table V, which presents experts by each 
file as well as its Z-score in parentheses; we use 0 again as 
threshold when determining expertise). 

TABLE III. DEVELOPER X METHODS (DM MATRIX) 

FileC a() b() c() d() 
Alice 2 1 1 16 

Carlos 4 3 4 1 
Bob 2 1 3 2 

TABLE IV. DEVELOPER X METHODS Z-SCORE AND EBDMETHOD 

FileC a() b() c() d() 
Alice -0.71 -0.71 -1.34 1.41 

Carlos 1.41 1.41 1.07 -0.78 
Bob -0.71 -0.71 0.26 -0.63 

Finally, calculating EBD for the project as a whole when 
considering the method-grain based approach is shown in Ta-
ble V. Note that here we omit presenting how the Z-score at 
method level for FileA.java and FileB.java has been derived 
because of space constraints. In Table V we find that Carlos 
has the highest expertise in the project (he has two cells that 
have positive Z-scores in different columns) when compared to 
Alice and Bob (both have only one cell with positive Z-score). 
Therefore, EBD can serve as a more precise measure of the 
extent of knowledge of a developer when fine-grained edit data 
is available. 

TABLE V. EXPERTISE AND Z-SCORE AT FILE LEVEL 

Project FileA.java FileB.java FileC.java 
Alice 3 (1.41) 0 (-1.34) 1 (-0.71) 

Carlos 1 (-0.71) 3 (1.07) 3 (1.41) 
Bob 1 (-0.71) 2 (0.27) 1 (-0.71) 

 Our approach can perform (expertise) analysis at different 
levels of granularity by using the appropriate composition 
matrix. Here we discussed how we can identify expertise of 
developers for the project by recursively considering edits from 
the method level (EBDM) to the file level and then to the pro-
ject level. We can follow a similar strategy to identify experts 
for the project by analyzing edits directly from the file level 
(EBDF). The only difference is that the latter considers files as 
atomic elements and does not take into account location of 
edits. That is, it computes the EBD of the whole project based 
on the ED of each file by considering the positive Z-score 
values. 

 Considering our example, if we were going to simply use 
ED for determining expertise for the project, that is, the person 
who has made the most changes to the project as the expert, 
then Bob would be considered the expert, followed by Alice, 
and then Carlos (see Table I). However, when considering 
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EBDF, we see that Alice, Carlos, and Bob all have the same 
knowledge in the project, as counting the number of files modi-
fied above the mean by all of them amounts to one in Table II. 
However, when using EBDM, we notice that Carlos has the 
highest expertise, as he is the expert in two out of three files, 
while the others are expert in only one out of three files, as 
shown in Table V. Therefore, a deeper analysis at a finer-grain 
could unveil which developers have breadth of expertise over a 
large number of methods in the file, and, consequently, should 
be indicated as an expert of the file. Recursively, developers 
that have breadth of expertise over a large number of files in 
the project should be indicated as an expert of the project.  

B. Time Matters  
As a project evolves, it is possible that developers take on 

different roles or move to different parts of a project. Typical 
archival analyses for expertise identification do not take project 
evolution into consideration [5], [6]. As a result of this, devel-
opers who had made frequent changes in the past, but are no 
longer active and are therefore uninformed of the current pro-
ject structure, may still be recommended as experts.  

We use the notion of a tridimensional matrix, which repre-
sents the whole project history and is composed of multiple 
slices, to consider evolution. Each slice represents a snapshot 
of the history at a certain point in time. A question that then 
arises is how should we create a slice to depict the history. On 
the one hand, humans tend to discretize and think of expertise 
in terms of time; therefore, we can use time intervals (weeks, 
months, etc.) to discretize experience. However, on the other 
hand, the project structure evolves as a sequence of commits 
(i.e., if no commit is performed in weeks or months, no evolu-
tion will be perceived). We reconcile these two factors by 
computing a slice per unit of time (e.g., one slice per month), 
but in terms of a sliding window that comprises a set of com-
mits performed before each slice. We define the size of the 
sliding window as presented in Equation 2. 

𝑠𝑙𝑖𝑑𝑒  𝑤𝑖𝑛𝑑𝑜𝑤  𝑠𝑖𝑧𝑒 = 𝑀𝑎𝑥(𝑀𝐴𝑀,𝑀𝐿𝐶) ∗𝑀 (2) 

Where MAM represents the number of commits in the most 
active month of the project history; MLC represents a mini-
mum limit of commits per window, independently of how 
active a project might be; and M represents a multiplier to 
allow users to experiment with different window sizes. We 
identify the number of commits that were performed in the 
most active month (MAM) of the project and use that as the 
default size of the sliding window over which we collect com-
mits. As previously explained, we did not simply choose a 
month as the window size since in open source projects the 
amount of activity in a given month fluctuates and we wanted 
to use a constant window size across our calculations. This 
implies that when we create slices for months that have less 
activity than the most active-month, they will involve commits 
from the previous month(s). This is in fact desirable, since 
having the window overlap across slices smoothens out sharp 
fluctuations and equally represents the effects of changes over 
expertise. However, since it is possible that a (small) project 
might not have a month with enough activity to create an ap-
propriate window size, we use a floor for the minimum number 
of commits (MNC) that are used to create a slice. 

In our illustrative example, performing expertise analysis 
over such slices might show that Alice has had the highest 
expertise in FileC.java (see layer 1 in Fig. 1), but as we visit 
subsequent slices we see that the expertise shifts, with Carlos 
being the expert in the last window (layer 3 in the Fig. 1) of the 
project. Such a time-based analysis can show when an exper-
tise handover occurs in a project (e.g., between periods 2 and 3 
Alice makes much fewer edits to the FileC.java and Carlos 
assumes development for that file). Such analysis can, there-
fore, identify points when developers started acquiring exper-
tise, how long it took them to gain expertise to the extent of the 
previous expert, and for how long a developer’s expertise is 
valid (as software changes, past expertise naturally loses 
strength). Therefore, our approach allows more nuanced inves-
tigation of expertise. 

 
FIG. 1. [DEVELOPER|FILE|TIME] BLOCK WITH LAYERS IN THE BACK DENOTING 

RECENCY . 

C. Speed Matters 
 Processing the aforementioned matrices for large projects, 
with tens of thousands of artifacts, hundreds of developers, and 
many years of duration, would require parallel processing 
instead of a traditional CPU-based architecture. For this reason, 
we adopted Dominoes [8] to process the matrices for expertise 
analysis. Due to its GPU-based solution, Dominoes can process 
large amount of data efficiently. 

 Dominoes first mines Git (version control repository) to 
extract the basic relationships among project elements and 
store them into a relational database (SQLite). It extracts the 
author and code churn for each commit and then uses the ab-
stract syntax trees (AST) to identify the methods that these 
changed lines of code belong to. It also extracts the composi-
tion structure (packages / files / classes / methods) from the 
AST. New commits performed on a repository are added and 
processed incrementally as Dominoes stores the time of the last 
commit that was processed. After importing a repository, Dom-
inoes represents such relationships as binary matrices called 
basic building blocks: [developer|commit] (DC), [com-
mit|method] (CM), [class|method] (ClM), [file|class] (FCl), and 
[package|class] (PCl). Dominoes also allows several operations 
over data, such as linear transformations (e.g., multiplication 
and transposition of matrices) and statistics transformations 
(e.g., Z-score). This way, basic building blocks can be further 
combined to yield derived blocks that allow exploration of 
derived project relationships (e.g., [developer|method] = [de-
veloper|commit] x [commit|methods]).  

 We extended Dominoes in this work to include a third 
dimension to represent time (e.g., [developer|method|time] 
(DMT)). Its construction is based on the desired relationship, 
granularity, and timeframe. It basically runs multiple construc-
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tions of a given bi-dimensional block (e.g. [developer|method]) 
for a timeframe (e.g., month), saving them as layers in the 3D 
block. The timeframe allows us to group data into layers to 
enable tracking of a project evolution or allow a user to per-
form an analysis over a unit of time that they care about. The 
layers in the tridimensional matrix can be data that is grouped 
by month, week, day, or even a specific number of commits.  

In order to allow efficient computation, Dominoes tailored 
the aforementioned data transformations into a Single Instruc-
tion Multiple Thread (SIMT) architecture, making it possible to 
process the data in GPU devices. Therefore, when a matrix 
manipulation is needed, Dominoes forks its execution by trig-
gering the respective asynchronous GPU code (called kernel) 
according to the desired operation.  

A GPU kernel is implemented in CUDA, a proprietary 
Nvidia programming library based on C, and is targeted to be 
executed only over GPUs. Essentially, a CUDA kernel is a 
function that generates thousands of parallel threads at the 
GPU device. While all these threads must work over the same 
code, they operate at different parts of the data. Since modern 
GPUs can have thousands of cores, when the data is correctly 
distributed, it is possible to achieve speed-ups of two or even 
three orders of magnitude when compared with traditional 
multi-core CPUs [14], depending on the nature of the problem. 
Modeling the data structure as matrices allows optimal paral-
lelization, especially in the case of operations that have only 
local data dependencies, as is in our case. 

Linear transformations are defined primarily for bi-
dimensional building blocks (3D blocks are iteratively con-
structed per layer). Due to data independence, matrix opera-
tions such as transposition and addition are performed in the 
GPU by 𝑁  𝑥  𝑀 parallel threads, where 𝑁 and 𝑀 represents the 
block dimension in rows and columns, respectively. This inde-
pendence among rows and columns allows an acceleration 
directly proportional to the number of available arithmetic 
cores, when correctly dealing with cached data [15]. Since 
GPUs may have up to 2000 cores in a single card, it is possible 
to achieve speed ups of more than 200 times when compared 
with multi-core CPU architectures [16] for this kind of opera-
tion. Additionally, the Z-score operation is defined in GPU for 
both bi- and tri-dimensional building blocks. Calculating the Z-
score requires calculating the mean and standard deviation for 
each artifact and all commits in a time frame, which can be 
parallelized reaching O ( log n) complexity [17]. Summing up 
values in GPU is known as prefix-sum and can be modeled as a 
parallel reduction problem. The Z-score operation in Dominoes 
is performed by using Thrust [18], an open source parallel 
algorithm library. 

III. EVALUATION 
In this section, we present an evaluation of our approach by 

focusing on the following aspects: (1) fine-grained analysis, (2) 
analysis based on timeframes, and (3) the use of GPU pro-
cessing. We used the open source project Apache Derby as our 
evaluation subject. All analyses were performed over the data 
extracted from the Derby repository between Aug 2004 and Jan 
2014, which comprises 7,573 commits, 36 unique developers, 
34,335 file changes, and 305,551 method changes. Apache 
Derby 10.11.1.1 comprises a total of 2,864 java files with an 

average of 398 lines of code each. Additionally, we observed 
that the author of a change is always the committer in the Der-
by repository, therefore, we only use commit information when 
determining expertise.  

We performed three experiments. The first two experiments 
analyze how granularity and time may affect the identification 
of expertise. The third experiment evaluates the scalability of 
our approach in processing large projects. 

A. Granularity 
We contrast analyses using fine-grain versus coarse-grain 

data when identifying expertise in the Derby project by: (1) 
computing ED and EBD metrics for each file and (2) compar-
ing the experts for each file based on these metrics. ED and 
EBD metrics diverged in 977 files, amounting to a 28% differ-
ence in expertise calculations. As previously discussed, this 
difference is a result of how ED is calculated: summing up the 
number of times a developer edited a file. Because of this, even 
if a developer has worked on only very specific parts of the 
file, she is considered an expert for the entire file. This is how 
expertise is normally identified [5], [10], [11] by current ap-
proaches, potentially leading to imprecision in the recommen-
dations.  

To demonstrate the difference when we calculate expertise 
at the coarse-grain (ED) versus at the fine-grain (EBD), let us 
consider the file “CreateAliasConstantAction.java” in the Der-
by project. This file comprises only one class with four meth-
ods: (1) CreateAliasConstantAction(), (2) executeConstantAc-
tion(), (3) toString(), and (4) vetRoutine(). Table VI presents the 
expertise (ED) of two developers who edited this file the most. 
The mean (1.88) and standard deviation (1.91) were computed 
out of 17 commits made by 9 developers who edited the file in 
total.  

On the other hand, TABLE VII presents the expertise breadth 
(EBD) of the same two developers from Table VI as well as 
the number of commits, mean, and standard deviation in order 
to highlight the difference between ED and EBD. It is im-
portant to note that ED basically represents the number of 
commits and Z-score of each developer over the file. For in-
stance, 7 commits are equivalent to 2.67 standard deviations 
above the mean and 3 commits are equivalent of 0.58 standard 
deviations above the mean. 

When we calculate expertise based on the number of com-
mits that each developer made to this file, we see that djd has a 
higher expertise (ED) when compared to rhillegas. However, 
when using EBD we find that rhillegas has a higher expertise 
breadth in the file. The numbered columns show the absolute 
and Z-score (in parentheses) commits for each method. The 
last column shows the absolute and Z-score (in parentheses) 
EBD values for the whole file. As previously discussed, the 
absolute EBD at file level is the number of methods each de-
veloper has modified above the mean (above zero Z-score). In 
this case, it is possible to see that djd has modified just one 
method above the mean (CreateAliasConstantAction()), while 
rhillegas has modified all of the methods above the mean. 
Consequently, we can consider that rhillegas (EBD value of 4) 
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has a wider knowledge over this file than djd  (EBD value of 
1).   

TABLE VI. ABSOLUTE AND STANDARD SCORE EXPERTISE OF A DEVELOPER 
(ED) FOR CREATEALIASCONSTANTACTION.JAVA 

Developer Absolute ED Z-score ED 
djd 7 2.67 

rhillegas 3 0.58 
 

TABLE VII. ABSOLUTE AND STANDARD SCORE EXPERTISE BREADTH OF A 
DEVELOPER (EBD) FOR CREATEALIASCONSTANTACTION.JAVA 

Developer Method 1 Method 2 Method 3 Method 4 EBD 
djd 1 (-0.57) 2 (0.30) 1 (-0.57) 0 (-0.16) 1 (-1.00) 

rhillegas 2 (1.73) 3 (1.50) 2 (1.73) 1 (1.00) 4  (1.00) 
Total Commits 5 7 5 1 - 
Mean / St. Dev. 1.25 / 0.43 1.75 / 0.89 1.25 / 0.43 1.0 / - - 

 
It is important to note that, because we are using a fine-

grained approach for calculating EBD, we are able to distin-
guish between modifications that change the method body, as 
compared to modifications that do not affect methods (e.g., 
inserting comments or import statements). For instance, in our 
example we find that djd has committed to the file seven times. 
However, of these only four changes affected methods. On the 
other hand, rhillegas committed the file three times, but each 
commit changed more than one method (e.g., Method 2 was 
modified by all three commits). Therefore, when analyzing 
commits per file, djd would be considered an expert, whereas 
using the fine-grained EBD view, we see that rhillegas has a 
broader expertise. In fact, rhillegas has changed each individu-
al method more times than djd (i.e., rhillegas dominates djd in 
all methods).   

Next, we calculate expertise for the file, EmbedConnec-
tion.java, since it is a large file (comprises 135 methods) and 
has been edited extensively. Table VIII shows the difference 
when comparing ED and EBD for this file. From this table, we 
see that djd has the most edits to the file (ED). However, he 
only touched 18 methods (EBDM), leading to a low Z-score. In 
contrast, kristwaa committed to this file only 8 times (ED), but 
her modifications touched 22 methods (EBD), leading to a 
higher Z-score when compared to djd. We find that rhillegas 
has the highest expertise since he edited 59 methods. 

Finally, bpendleton appears in Table VIII with two com-
mits in the ED list. However, one of his commit was made 
because of import modifications (not considered when calculat-
ing EBD), and the other commit touched just one method. 
Therefore, he does not appear in the EBD list. In contrast, coar, 
who has just one commit (and 15th position in the ED list), has 
modifications to 56 methods (2nd position in the EBD list) since 
he was responsible for the initial code creation.  

The same approach can be applied at the project level to 
identify expertise when considering the entire project history. 
There are three ways in which we can calculate this, as dis-
cussed in Section Error! Reference source not found.. First, 
we calculate the total number of commits performed by each 
developer in the project (ED column) as shown in Table IX. 
That is, we count the number of commits that has been made in 
the project by a developer. This metric follows the intuition 
that the more commits a developer has made to a project, the 
more knowledge she has about the project. 

Second, we calculate EBD for the project by aggregating 
changes at the file level (i.e., we give expertise credit to a de-
veloper for each file, in which she has Z-score of commits 
above zero for that file). We call this EBDF. The intuition here 
is that to be considered an expert, a developer must have 
changed a file more than average, and that information is ag-
gregated for the project. 
TABLE VIII.  TOP EXPERT DEVELOPERS AT FILE EMBEDCONNECTION.JAVA BY 

ED AND EBDM
 

Dev. ED Z-score   Dev. EBDM 
(Method Level) 

djd 21 2.28   rhillegas 59 2.04 
kahatlen 19 1.98   coar 56 1.89 
rhillegas 16 1.53   kahatlen 50 1.59 
oysteing 14 1.23   kristwaa 22 0.21 

dag 10 0.63   dag 22 0.01 
kristwaa 8 0.33   djd 18 0.01 
kmarsden 6 0.03   oysteing 18 0.10 
abrown 2 -0.56   kmarsden 8 -0.47 

bpendleton 2 -0.56   bernt 4 -0.67 
lilywei 2 -0.56   bandaram 2 -0.77 

bandaram 2 -0.56   lilywei 2 -0.77 
bernt 1 -0.71   tmnk 1 -0.82 

davidvc 1 -0.71   suresht 1 -0.82 
dyre 1 -0.71   abrown 1 -0.82 
coar 1 -0.71   mamta 1 -0.82 

mamta 1 -0.71   dyre 1 -0.82 
bakksjo 1 -0.71      
suresht 1 -0.71      
tmnk 1 -0.71      

 
Finally, we calculate EBD for the project by aggregating 

changes from the method level (EBDM). That is, we give ex-
pertise credit to a developer for a file if she has a Z-score above 
zero when considering changes to methods of that file. The 
intuition here is that a developer is considered an expert in a 
file if she has breadth of knowledge in that file (Zscore > 0), 
and this is recursively computed for the project.  

When we compute the top 10 experts in the project, we see 
that kahatlen appears as the highest expert in the project when 
considering the ED measurement. However, in EBDF and 
EBDM he moves to the 3rd position. Conversely, djd assumes 
the 1st position for both EBDF and EBDM measures, which 
means that djd has more breadth in knowledge across the 
whole project than kahatlen. This clearly shows that calculat-
ing expertise by simply computing the number of commits 
performed by a developer can yield very different results. 
Moreover, coar, who appears in the 5th and 2nd positions in 
EBDF and EBDM, respectively, does not even appear in the ED 
list. The same situation occurs with dag, who moves from the 
8th position according to both ED and EBDF to the 5th position 
when considering EBDM. Also note that bandaram (colored in 
green) in the EBDM list does not appear in either ED or EBDF 
lists. On the other hand, two other developers in EDBF list 
(bakksjo and davidvc, colored in red) do not appear in the 
EBDM list. This shows that many developers make edits to 
only some portions of the file and may not have expertise over 
the majority of the methods in a file. 

Another interesting case occurs when we consider bakksjo, 
who is at the 4th position in the EBDF list with a Z-score of 
1.52. When considering EBDM, he falls down to 26th position 
in this list (not shown in Table IX), presenting a value of 8 and 
a Z-score of -0.61. This happens because bakksjo has modified 
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over 1300 files. However, most of his changes introduced 
comments and copyright modifications, without any function-
ality changes in the code. This is another example of how 
simply calculating edits to a file may not be the right approach 
to identifying expertise on that file. These results show how 
fine-grained analyses at the method level can provide a more 
nuanced view of expertise. Consequently, another advantage of 
analyzing edits at the method level is the ability to filter out 
non-code related changes. Previous research has used commit 
size as a mechanism to filter out copyright and other non-code 
related changes [7], [19]. Our results show that that analyzing 
edits at the method level provides a more accurate means of 
filtering out these ancillary commits. 

TABLE IX.  TOP 10 EXPERT DEVELOPERS BY ED, EBDF
 AND EBDM 

CONSIDERING ABSOLUTE AND Z-SCORE VALUES 

Dev. ED  Dev. EBDF  
(File Level)  Dev. EBDM 

(Method Level) 
kahatlen 1393   djd 1846 2.61  djd 1533 3.42 

djd 1190  rhillegas 1780 2.49  coar 1244 2.66 
rhillegas 990  kahatlen 1556 2.08  kahatlen 1047 2.13 
kmarsden 650  bakksjo 1252 1.52  rhillegas 960 1.90 
kristwaa 640  coar 1210 1.45  dag 631 1.03 

fuzzylogic 412  kristwaa 1045 1.15  kmarsden 467 0.60 
myrnavl 385  fuzzylogic 893 0.87  kristwaa 403 0.43 

dag 331  dag 879 0.84  bandaram 361 0.32 
mikem 284  davidvc 866 0.82  fuzzylogic 322 0.21 
mamta 282  bpendleton 823 0.74  bpendleton 1245 0.01 

B. Time 
Another important aspect to consider when analyzing ex-

pertise is time. As software and people change over time, it is 
expected that expertise also evolves. The Apache Derby pro-
ject, which is a long living and active project with a 10-year 
history, is not an exception. We analyze expertise evolution 
through two studies, which analyze changes in expertise: (1) in 
one particular file, and (2) the entire project. For both analyses 
we group commits by using Equation (2). 

We select the file EmbedConnection.java to measure exper-
tise evolution when considering a single file, because it was the 
third most committed file in the project and was “touched” by a 
large number of developers. When calculating the size of the 
sliding window for the analysis (see Equation 2), MAM equals 
to 11, as this was the number of commits that occurred in the 
most active month, which was Feb 2008. MNC equals to 10, as 
we believe this provides a sufficiently large slice of data over 
which to perform analysis. Note that our choice of MNC does 
not influence the results, as it is lower than MAM. We did not 
change the M factor; therefore, our sliding window size is 11.  

We derive the [Developer|Method] blocks for each layer, 
based on the aforementioned sliding window and stack them to 
create a [Developer|Method|Time] 3D block for the Embed-
Connection.java. We then compute a time-based EBD for it.  

Fig. 2 shows the graph of EBD evolution of developers 
who have edited EmbedConnection.java. We observe that djd 
was the most active developer for almost half a year. Then, 
onwards kahatlen assumed expertise for almost a year, fol-
lowed by rhillegas, both relinquishing their expertise at the 
same time. The graph shows that rhillegas, after almost three 
years since the beginning, starts to become an expert again in 
this file. A few months after this oysteing’s expertise starts to 

decline. At the end, rhillegas can be considered the expert in 
this file. Note that if we were to determine an expert for the file 
by using ED (and over the entire project) djd would be consid-
ered the expert (Table VIII). On the other hand, when we con-
sider the evolution of expertise (using EBD), we find that rhil-
legas has the most expertise breadth at the end. 

 

FIG. 2. DEVELOPER BREADTH EXPERTISE FOR FILEEMBEDCONNECTION.JAVA. 

For the second study (temporal analysis of expertise across 
the project as a whole), when we consider the sliding window 
for analysis we group commits by setting MAM to 270 (Equa-
tion 2). This was the maximum number of commits that oc-
curred in the most active month (Aug 2006). We set MNC to 
100, as we believe this provides a sufficiently large slice of 
data over which to perform analysis. Again, our choice of 
MNC does not influence the results, as it is lower than MAM. 
Also, the M factor was not changed, leaving the sliding win-
dow size to 270.  

We then compute EBD for the entire project by considering 
each time slice. Here we show the results of our analysis of the 
top five developers in terms of EBD in Table IX. 

Fig. 3 shows evolution of EBD of these developers. In this 
graph, we find that djd was the main developer in the begin-
ning of the project, together with coar. Almost a year and a 
half later, rhillegas and kahatlen start to contribute more exten-
sively to the project, increasing their expertise.  Four years 
after the start of the project, djd leaves the project and rhillegas 
takes over the development. In the fifth year of the project 
rhillegas has his first month with EBD higher than two stand-
ard deviations above the mean (higher dashed line). While 
rhillegas still remains very active, after six years kahatlen 
seems to supersede rhillegas in terms of EBD. This clearly 
contrasts with the results presented in Table IX. When we do 
not consider evolution, djd would be considered the main ex-
pert.  

Finally, dag appears as the leading expert in Derby’s recent 
years (superseding kahatlen), but had less activity in the earlier 
years. His expertise hardly even crossed one standard deviation 
above mean (lower solid single line) during the project. Never-
theless, he was an active developer. However, when analyzing 
over the entire project history, dag (see Table IX ED column) 
is classified as the 8th expert in the project. 
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C. Performance 
Our approach has been designed to enable online explorato-

ry analysis over large-scale software engineering data. It makes 
efficiency of computation an underlying requirement. In this 
section, we provide some benchmarks contrasting our approach 
using Dominoes with an equivalent tool in CPU. This tool was 
specifically developed to allow comparison of optimal CPU 
implementations with our GPU implementation.  

 

FIG. 3. DEVELOPER BREADTH EXPERTISE FOR THE WHOLE PROJECT. 

In order to make a fair comparison, all linear transfor-
mations and matrix operations in CPU are made in 
OpenBLAS2, an open source implementation of BLAS (Basic 
Linear Algebra Subprograms) API with many handcrafted 
optimizations for specific processor types. OpenBLAS is able 
to decompose a BLAS operation into smaller “kernel routines” 
and is thus able to use all available CPU cores during its pro-
cessing, thereby making it a fair comparison. We experimented 
both tools with different matrix sizes, providing evidences 
regarding scalability. We use the Speed up metric, defined in 
Equation (3) to measure how fast GPU is in relation to CPU. 

𝑆𝑝𝑒𝑒𝑑  𝑈𝑝 =
𝑇𝑖𝑚𝑒!"#

𝑇𝑖𝑚𝑒!"#
 (3) 

In this experiment, we used a PC equipped with an Intel 
Core 2 Quad Q6600 using 8 GB of RAM and an nVidia Ge-
Force GTX 580 model, which has 16 Stream Multiprocessor 
with 512 Stream Processor each. 

The initial (full) loading of all commits into the database 
required 15 minutes in order to create the AST, while the par-
ser to identify all changed methods took about 208 minutes. 
However, we reiterate that this process occurs only once, as 
future commits are processed in an incremental way. After that, 
we measure the total time spent to process the 3D building 
block introduced in Section II.B at the coarse level ([Develop-
er|File|Time]). This block comprises 114 layers of a 36  x  3400 
([Developer|File]) matrix (a total of 13,953,600 elements). 
Building this block from Dominoes’ database takes 2.38 se-
conds. On the other hand, composing a 3D building block at 
fine grain level ([Developer|Method|Time]) takes about 189.96 
seconds, comprising of 114 layers of 36 x 43,788 matrices 
([Developer| Method]) each. Building block generation is al-
ways done in CPU, as it is a query over the database. 

                                                             
2 OpenBLAS: http://www.openblas.net 

Processing the Z-score requires calculating the mean and 
standard deviation of each layer and then computing the Z-
score itself. Table X shows the times taken to calculate EBD. 
In the first column (“EBD when Considering Files”), we show 
the time necessary for creating a 3D block for the entire project 
when considering files as the unit of analysis. The total time 
taken to process all layers (“Total” column) is 303.42 versus 
19.59 seconds when comparing between CPU and GPU, re-
spectively. Therefore, we have a speed up of 15.48 times in 
relation to CPU. In the second column (“EBD when Consider-
ing Methods”), we also calculate EBD for the entire project, 
but this time considering methods as the unit of analysis. The 
total time taken to process all layers  (“Total” column) is 
1,998.31 and 212.01 for CPU and GPU, respectively, achiev-
ing a speedup of 9.42 in relation to CPU. 

The results show that a large difference in performance can 
be achieved when we perform the same analysis in GPU as 
compared to using CPU, even when the latter employs optimal 
algorithms provided by OpenBLAS. It is important to note that 
we used a conventional and affordable GPU card when running 
the experiments. Replacing this card with a more powerful 
card, such as nVidia Tesla K40, could easily further boost 
Dominoes performance. The nVidia Tesla K40, the most pow-
erful GPU at the time of writing of this paper, provides at least 
20 times more computational power.  

TABLE X.  PROCESSING TIME (IN SECONDS) FOR CALCULATING 3D BUILDING 
BLOCKS FOR EBD IN THE PROJECT 

 EBD WHEN CONSIDERING 
FILES 

EBD WHEN CONSIDERING 
METHODS 

 Mean & 
SD Z-Score Total Mean & 

SD Z-Score Total 

CPU 2.19 301.23 303.42 424.71 1,573.60 1,998.31 
GPU 0.10 19.49 19.59 8.55 203.46 212.01 
Speed 

Up 21.90 15.45 15.48 49.67 7.73 9.42 

IV. THREATS TO VALIDITY 
The divergence of expertise from expertise breadth that we 

observed is largely based on the Apache Derby project. We 
selected Apache Derby because it has a large, active contribu-
tor base. It is possible that other projects might not have as 
much as deviation in expertise breadth. We need further studies 
of other projects to observe whether such deviation between 
expertise and expertise breadth holds true. A central construct 
in our analysis is that if someone edits a method, we assume 
that the developer has a certain degree of knowledge of that 
method. However, since other approaches also use number of 
edits as a proxy for knowledge, this is not a major threat. Fur-
ther, our analysis filters out non-source changes to the method 
(or file). 

Another threat in our study is that we use Z-scores to iden-
tify expertise, which assumes a normal distribution. Project 
data might not be normal. However, since we use Z-scores to 
identify developers who have made edits more than the average 
number of times, non-normality of our data should not be a 
problem. In the worst case, the Z-score provides us a ranking 
(even if some developers have negative scores) with a percep-
tion of the distance among data points in the sample.   
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V. RELATED WORK 
This section present related works divided into three 

groups: (1) research that deal with expertise identification, (2) 
infrastructures for repository analysis and (3) infrastructure 
focused on speeding up data analysis.  

McDonald and Ackerman [7] designed Expertise Recom-
mender (ER), which is based on two heuristics for recommend-
ing developers for specific tasks: tech support and change 
history. The tech support heuristic uses an issue database to 
search for similar past task and recommends developers in-
volved in the previous tasks. The change history heuristic 
states that the last person that changed an artifact is a good 
candidate for changing it again. Unfortunately, the latter heu-
ristic puts an extremely high weight on recent changes and 
ignores the past. Our approach uses the entire history of a re-
pository, but segregate this history into timeframes that allow 
the perception of how expertise fluctuates over time.  

Gîrba et al. [19] defined an “Ownership Map” visualization 
to understand when and how different developers interacted 
and in which parts of the code, as well as define who a file 
belonged to and for how long. In their approach, lines of code 
added/removed by each developer are counted to determine 
ownership. A developer who owns (made the latest edit) the 
most number of lines in the file is considered the owner of the 
file. It does not take into account the syntactic structures of the 
file (such as classes or methods) and is influenced by non-
functional changes like comments. Our approach, in contrast, 
can detect changes at different granularities as well as ignores 
non-functional changes. 

Anvik et al. [4] proposed an approach to recommend de-
velopers for a specific issue by using machine learning tech-
niques exclusively over an issue database. This way, the infor-
mation provided does not take into account artifacts’ modifica-
tions in order to suggest a developer who is the most appropri-
ate to change specific artifacts. Our focus is different, as we 
identify expertise over artifacts (e.g., files, project). 

Posnett et al. [20] considers both artifact and developers 
perspectives in order to extract focus and ownership for com-
puting a unified score: DAF (developer attention focus), which 
measures how focused is a developer during his task (i.e., their 
work is spread among many artifacts or more focused). In 
contrast, EBD measures the breadth of expertise of a developer 
in specific artifacts (or the project). 

Schuler and Zimmermann [21] proposed an approach for 
measuring expertise by the frequency in which a developer 
uses a method. While this information can help identify a per-
son who knows how to use a method, it might not help in iden-
tifying the developer who knows that method the best, that is, 
the person who is the most appropriate to edit that method. 
Instead, our approach uses modifications inside a method for 
proposing experts in a file. 

Additionally, infrastructure to facilitate automated expertise 
identification through repository exploration exists. For exam-
ple, Minto and Murphy [5] introduced the Emergent Expertise 
Locator (EEL). EEL is based on the framework by Cataldo et 
al. [6] for matrix manipulation, thus requiring massive linear 
operations to be performed depending on the size of the pro-

ject. To avoid this problem, EEL imposes a constraint over 
matrix size, allowing only matrices up to 1,000 × 1,000 to be 
used. Besides that, EEL uses coarse-granularity (i.e., files) to 
recommend experts. However, the problem of personnel allo-
cation becomes harder for large projects, with much more than 
1,000 files. Moreover, assuming files as atomic units may lead 
to inadequate recommendations, as changes in very specific 
parts of the file or broader changes in multiple parts are con-
sidered equivalent. Our proposed approach, on the other hand, 
works at a fine grain (i.e., methods) to differentiate specific 
changes from broader changes. This leads to large matrices that 
need to be processed, which can be performed interactively 
because of the underlying GPU architecture of Dominoes. 

Kagdi et al. [3] proposed a system for assisting in the tasks 
of allocating developers for changing a given file. It considers 
three metrics to compose a ranked list of recommended devel-
opers: contribution, activity, and recency of changes. The con-
tribution metric indicates the number of commits each devel-
oper performed over the file. The activity metric indicates the 
number of days the developer has committed at least once in 
the project. The recency metric indicates the date of the last 
commit of each developer. Similar to the previously discussed 
approaches, this approach works at coarse grain (i.e., files) and 
is not designed to support interactive exploratory analysis. 

Research has produced several infrastructures designed for 
repository analysis. For example, Kenyon [22], is a system that 
integrates information originating from various repositories 
into a single database for future analysis. Our approach takes a 
step further and allows expertise analysis using data from the 
repository at interactive speeds. Evolizer by Gall et al. [23] 
allows analysis of software archives. It analyzes AST level 
changes to identify different types of changes and modification 
patterns. Our approach also uses AST to identify relevant 
changes, but with the focus on expertise identification. Code-
Book by Begel et al. [24], creates a network that connect de-
velopers and artifacts by mining version control change logs, 
emails, and other artifacts in a software repository. The under-
lying graph can then be used by applications to answer differ-
ent analysis questions (e.g., WhoseIsThat [25] identifies arti-
facts edited by a developer). Our approach uses matrices to 
define software relationships and allows for incremental update 
of data, which is not the case for CodeBook. 

Finally, there exists research that aims to speed up reposito-
ry analysis. Boa [26] provides an infrastructure for analyzing 
large scale software repositories on a cluster. Although its 
performance may be comparable to Dominoes, setting up a 
CPU cluster is not a trivial task, making it more applicable for 
researchers in the university than for developers in the industry. 
Jean-Rémy et al. [27] developed the Harmony platform, an 
unified model that extracts and analyzes data at a coarse grain 
from different version control systems. After extracting the 
data to a database, the user is responsible for dealing with piec-
es of data to extract the desired information. These tools re-
quire the user to write a functional script to define what the 
platform needs to process per analysis type. This can be a con-
straint, since end users will need to program their analysis and 
write a script for each of their queries.  
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VI. CONCLUSION AND FUTURE WORK 
Performing exploratory data analysis in software reposito-

ries has computational challenges. Here we show how our 
approach can analyze fine-grained data, such as edits to classes 
or methods to identify expertise in a project. Our results show 
that when we consider expertise by only recognizing edits at 
the file-level, we get a 28% deviation as compared to when we 
analyze expertise based on the breadth of developers’ 
knowledge. Moreover, since we calculate changes at a fine-
grained level, we are able to filter out those changes that do not 
affect the method body, thereby, being more precise in exper-
tise identification. In order to validate our results, we plan to 
interview Derby managers and collect their interpretation about 
expertise breadth versus depth. Additionally, we plan to con-
duct new exploratory data analysis in other projects. 

We also introduce the concept of tri-dimensional matrices 
of relationships across software project elements over time. 
These matrices allow temporal analysis of relationships. When 
identifying expertise in Apache Derby, we found that temporal 
analysis shows the fluctuations in developer expertise for a 
single file, as well as for the whole project. It also shows when 
a developer stopped being active and “handed over” the exper-
tise to another. Had we considered the entire history of the 
Derby project, the analysis would incorrectly recommend a 
developer who was no longer active in the project.  

We know that each method inside a class might not have 
the same importance. For instance, get/set methods have a low 
complexity to implement or maintain, when compared to other 
functional methods (e.g., executeConstantAction). In the fu-
ture, we plan to use a weighting mechanism for methods ac-
cording to their complexity, which can then help us in identify-
ing experts not only on the breadth of their knowledge, but also 
on the complexity of the changes that they have made. We also 
plan to perform our analyses on other projects to generalize the 
feasibility of our approach, as well as for showcasing differ-
ences when calculating expertise by considering low level 
changes and breadth of changes. In addition, we plan to con-
duct a case study with industry managers to identify the usabil-
ity of our analyses and the presentation of the results.  

Finally, using Z-score for data with a non-normal distribu-
tion can be a problem depending on the spread of the data. To 
mitigate this problem, we plan to investigate the adoption of 
the modified Z-score, which uses median and MAD (Median 
Absolute Deviations) [28] instead of mean and standard devia-
tion. 
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