

Niche vs. Breadth: Calculating Expertise over Time
through a Fine-Grained Analysis

Jose Ricardo da Silva Junior
Esteban Clua, Leonardo Murta
Universidade Federal Fluminense

Niterói, Brazil
{jricardo,esteban,leomurta}@ic.uff.br

Anita Sarma
Computer Science and Engineering Department

University of Nebraska, Lincoln
Lincoln, United States
asarma@cse.unl.edu

Abstract—Identifying expertise in a project is essential for task

allocation, knowledge dissemination, and risk management,
among other activities. However, keeping a detailed record of
such expertise at class and method levels is cumbersome due to
project size, evolution, and team turnover. Existing approaches
that automate this task have limitations in terms of the number
and granularity of elements that can be analyzed and the analysis
timeframe. In this paper, we introduce a novel technique to identi-
fy expertise for a given project, package, file, class, or method by
considering not only the total number of edits that a developer has
made, but also the spread of their changes in an artifact over time,
and thereby the breadth of their expertise. We use Dominoes –
our GPU-based approach for exploratory repository analysis – for
expertise identification over any given granularity and time peri-
od with a short processing time. We evaluated our approach
through Apache Derby and observed that granularity and time
can have significant influence on expertise identification.

Keywords—expertise identification; exploratory data analysis; GPU
computing

I. INTRODUCTION
Identifying expertise in a software project is an important

issue for task allocation, personnel hire, onboarding, and de-
velopment help, among other activities. It has been observed
that when stuck in a task, developers often use their implicit
knowledge of work dependencies to identify a developer who
can help [1], or rely on their social network to find others who
might know enough about the artifact in question [2]. In fact,
managers often use informal processes to facilitate their team
members to come talk to them (e.g., a manager keeping a can-
dy bowl in his office), so that they are aware of who is having
what kinds of problems and can direct developers to each oth-
er. However, the large scale of software development com-
bined with developer turnover can make such informal pro-
cesses in identifying expertise difficult [3]. In globally distrib-
uted software development (or in the case of open source de-
velopment), finding an expert is even more challenging.

Software development leaves traces of development activi-
ties in the repository, which can then be used for inferring the
expertise of developers. Existing approaches in expertise iden-
tification have used machine learning to identify expertise
among developers based on their edit histories. These ap-
proaches have been used for supporting automated bug triaging
(to find the appropriate developer to perform a bug fix [4]) or
support collaboration in a team by mining relevant artifacts to a

given change request, and recommending developers based on
their source code changes, experience and contributions [3].

However, these approaches can be inefficient when large
scale of data needs to be processed. A large software project
may comprise thousands of files, with hundreds of developers
making thousands of commits per month, making it difficult or
even impossible to process this data at interactive rates. Current
approaches often work off-line and scope the analysis to man-
age scalability, which may lead to inaccuracies in the results.
Some of the common strategies for scoping the analysis are:
(1) filtering the data, (2) performing coarse-grained analysis,
and (3) overlooking evolution.

In the first case, available tools either scope the amount of
data that is processed or the time period over which processing
is performed. For example, EEL [5] scopes the analysis to
1,000 project elements when identifying expertise in a team,
thereby restricting the application to smaller chunks of data. In
the second case, tools often analyze data at a coarse-grain, such
as the file level [6]. The problem of performing analysis at this
level is that a developer may be recommended as an expert of
the whole file, even if she only intensively worked on a small
portion of that file. Analysis at the finer-grain (method or lines-
of-code), however, leads to scale issues. Finally, most current
approaches, such as Expertise Recommender (ER) [7], consid-
er the entire history of the project at once to recommend ex-
perts, overlooking the fact that artifacts evolve over time and
that developers may change their roles. Further, temporal anal-
ysis can show how expertise of a development team changes
and whether there are artifacts that lack experts at a given mo-
ment in time.

In this paper, we propose a novel approach for identifying
expertise that considers not only the total number of edits over
a given artifact, but also the spread of the change over the parts
of it, and the time period when the change was performed.

We analyze expertise by considering fine-grained changes
and time frames. We organize fine-grained data extracted from
software repositories into multiple matrices. For example, by
extracting the lines of edited code in a file (code churn) from
the version control repository we can reverse engineer the
information to create a matrix of methods that were added,
removed, or changed as part of each change set ([com-
mit|method] matrix). Similarly, we can also create a matrix of
developers that were responsible for each commit ([develop-
er|commit] matrix). By analyzing the project we can create
matrices that represent the composition of artifacts. For exam-We thank CNPq, CAPES, FAPERJ, and NSF (through awards: IIS-

1110916, IIS-1314365, and CCF-1253786) for the financial support.

978-1-4799-8469-5/15/$31.00 c© 2015 IEEE SANER 2015, Montréal, Canada409

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:19:57 UTC from IEEE Xplore. Restrictions apply.

ple, which methods belong to which class, which classes be-
long to a package, and so on. These composition dependencies
are then operationalized into matrices ([class|method],
[file|class], and [package|class]). Operating over these matrices
allows us to identify developers who are experts on an artifact
at different levels. We can identify experts at a fine-grained
level (e.g., methods), or at a coarser-grained level (e.g., classes,
files, packages, or the project as a whole).

In addition, we also analyze the breadth of changes in an
artifact. That is, we can differentiate if a developer has exper-
tise on only a specific part of an artifact (e.g., a single method
in a file) or has a broader experience with the artifact (e.g.,
developer has edited the majority of the files). Finally, we
allow users to identify the time period over which expertise is
to be calculated, as well as analyze how expertise is changing
for a project element over time.

We use Dominoes [8] – our GPU-based approach for effi-
cient, large-scale repository analysis – to perform our analyses.
The parallel architecture of Graphics Processing Units (GPU)
adopted by Dominoes allows it to process the underlying ma-
trices much faster than what can be possible with CPU pro-
cessing [9]. This allows us to analyze expertise as an interac-
tive analysis process, even for large datasets.

We evaluated our expertise identification approach in the
Apache Derby1 project. We chose Apache Derby since it is
stable project, has lots of activity since the beginning, and is a
long-lived project. When we contrast our expertise identifica-
tion technique with the usual (code) edit based approach, we
observed that our breadth-based analysis at fine-grain yields
different expertise results in about 28% of the project files
(about 977 files). We also show how developer expertise in the
Apache Derby project fluctuates over time. Finally, by running
these analyses in GPU, we observed a boost in performance
when compared to CPU processing.

II. BREADTH-BASED EXPERTISE IDENTIFICATION OVER TIME
Expertise identification has typically considered the total

number of edits to an artifact that a developer has made, with-
out considering the location of these edits. Here, we introduce
our approach for identifying the breadth of expertise of a de-
veloper in a project, and over time. This approach considers
two important factors pertaining to expertise: granularity of
analysis and time. In essence, artifacts are not atomic, and local
expertise (in specific parts of an artifact) should be differentiat-
ed from global expertise (in the whole artifact). Moreover, as
artifacts naturally evolve over time, the expertise of a develop-
er diminishes unless she has kept familiarity with the artifacts
over time through her development efforts.

A. Granuarity Matters
Here we discuss two different strategies for calculating the

expertise of a developer in a given artifact (e.g., file): Expertise
of a Developer (ED) and Expertise Breadth of a Developer
(EBD). The first one considers the entire artifact as an atomic
element, and is vastly adopted in the literature [5], [10], [11].
However, to differentiate between developer expertise, we use

1 Derby Repository: https://github.com/apache/derby

the Z-score in our analysis. The second approach uses the un-
derlying composition structure of the artifact (e.g., methods) to
perform a fine-grained analysis when calculating expertise.

Expertise of a Developer (ED): it identifies the frequency
of changes to an artifact (e.g., file, project, etc.) by a given
developer. Frequency of edits has long been used as a proxy
for identifying the knowledge that a developer has about an
artifact, typically a file [12]. The intuition is that the more
someone has edited a file, the more working knowledge that
person has about that file. The frequency of edits can therefore
help answer two related questions: (1) who is the developer
that is an expert for a given file?, and (2) which files is a given
developer an expert of?

 Table I presents a scenario with three developers who have
worked on three files ([developer|file] matrix – DF for short).
Note we arrive at the DF matrix by operating over the basic
tiles ([developer|commit] x [commit|file]). The cells in the
derived matrix DF represent the number of times a developer
𝑑! edited a file 𝑓!. Besides that, Table I also shows the number
of commits performed by each developer (note that it is differ-
ent from summing all columns in a row, as a commit could
comprise more than one file).

TABLE I. DEVELOPER X FILE

Project FileA.java FileB.java FileC.java Total Commits

Alice 14 2 20 28

Carlos 10 24 12 25

Bob 25 10 8 40

To answer the first expertise question (who is an expert for
a given file 𝑓!), we search for the developers who edited the
file the most. This is done by scanning down the column of 𝑓!
in the DF matrix. In our simplistic example (see Table I), if we
want to identify an expert for FileC.java, we would indicate
Alice. Carlos would be considered as the second most knowl-
edgeable developer in that file.

To answer our second question, about the expertise of a
specific developer 𝑑!, we scan the rows in the matrix for the
highest values. In our example, we find that Alice has expertise
in FileC.java, Carlos in FileB.java, and Bob in FileA.java.

A key challenge in this approach is identifying the right
threshold to use. For example, is there a minimum number of
changes that a developer must have performed before they can
be considered as an expert? Further, if two developers have
changed the file, how do we determine who can be defined as
“the” expert – should that be the person with the most edits?
For example, if we are going to compare the expertise of Alice
versus Carlos on FileA.java, because Alice has made four more
changes than Carlos, does Alice clearly have more expertise
than Carlos? Does a difference of four additional edits matter,
or should there be a minimum distance between the numbers of
edits to differentiate expertise among developers?

To overcome this challenge, we applied the Standard (Z)
Score [13] to statistically identify the appropriate thresholds.
We convert the absolute scores (support) into Z-scores accord-
ing to Equation 1. In this specific case, 𝑥 is the absolute score

410

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:19:57 UTC from IEEE Xplore. Restrictions apply.

in Table I and µμ and σ are the mean and standard deviation of
the number of edits for each file, respectively.

𝑧 =
(𝑥 − 𝜇)
𝜎

 (1)

When using standard (Z) scores (see Table II), cells above
zero indicate values that are above the mean, that is, they indi-
cate that a developer has changed that file more than the mean
number of times that file has been changed in the project. Simi-
larly, cells below zero indicate values below the mean. Moreo-
ver, cells above (or below) one, two, or three indicate values
above (or below) one, two, or three standard deviations from
the mean, respectively. For example, when we consider
FileC.java, we see that it has been changed on average 13.33
times (summing column 3 in Table I and dividing by the total
number of developers in the project), and that Alice has edited
the file 1.34 standard deviations above the mean (Table II, cell
value for Alice’s edits to FileC.java).

TABLE II. STANDARD SCORE

Project FileA.java FileB.java FileC.java
Alice -0.37 -1.10 1.34

Carlos -1.00 1.32 -0.27
Bob 1.37 -0.22 -1.07

We assume zero as the threshold for determining expertise.
That is, to be counted as an expert of a file a developer must
have edited more than the mean change rate of that file. In our
example, this measure enables us to quickly identify the expert
developer for each of the files. Alice can be considered an
expert in FileC.java, since she has made significantly more
changes than any other developer in the project. Similarly, Bob
is an expert in FileA.java, and Carlos in FileB.java. To be
considered a higher expert than another, we require that the
developer has to have edits that are at least one standard devia-
tion higher.

Expertise Breadth of a Developer (EBD): Here we chal-
lenge the assumption that a developer who has more commits
to a file has knowledge of the (entire) file. Normally, a file
comprises of a set of classes and methods and it is possible that
a developer only performed niche changes to a subset of meth-
ods or internal classes. In such cases, numerous edits to only a
subpart of the file does not guarantee that the developer is an
expert on the entire file. We, therefore, analyze changes at
different levels of granularity to create a more nuanced under-
standing of expertise.

To calculate EBD we run an analysis at a fine grain. In our
case study, we analyzed edits at the method level (however, in
our approach it is also possible to analyze expertise at the lines-
of-code level, if needed). We first calculate the absolute scores
(count of number of edits to the [developer|method] matrix –
DM for short – which is computed as [developer|commit] x
[commit|methods]). We then transform the absolute scores into
standard (Z) score. Finally, using zero as a threshold, we count
the cells that have positive numbers as a measure of expertise.

As an example, consider Table III (DM matrix), which is
composed of methods present in FileC.java and the number of
commits performed by each developer, which involved those
methods. Table IV presents the Z-score calculated from Table

III. In this example, it is possible to see that even though Alice
has edited FileC.java the most (20 times) and therefore had the
highest ED for this file (Table I), most change she has made
were only to a single method in the file. In contrast, Carlos has
made only 12 changes (as compared to 20 by Alice), but his
changes are spread across all the methods in the file. Therefore,
based on our proposed metric, Carlos has a higher EBD in
FileC.java (in Table IV Carlos has positive entries for three
methods). If we now look at the expertise of developers in the
project that comprises these three files, we find that Carlos is
the expert in FileC.java and Alice in FileA.java. Carlos and
Bob both have expertise in FileB.java, although Carlos has a
higher expertise (see Table V, which presents experts by each
file as well as its Z-score in parentheses; we use 0 again as
threshold when determining expertise).

TABLE III. DEVELOPER X METHODS (DM MATRIX)

FileC a() b() c() d()
Alice 2 1 1 16

Carlos 4 3 4 1
Bob 2 1 3 2

TABLE IV. DEVELOPER X METHODS Z-SCORE AND EBDMETHOD

FileC a() b() c() d()
Alice -0.71 -0.71 -1.34 1.41

Carlos 1.41 1.41 1.07 -0.78
Bob -0.71 -0.71 0.26 -0.63

Finally, calculating EBD for the project as a whole when
considering the method-grain based approach is shown in Ta-
ble V. Note that here we omit presenting how the Z-score at
method level for FileA.java and FileB.java has been derived
because of space constraints. In Table V we find that Carlos
has the highest expertise in the project (he has two cells that
have positive Z-scores in different columns) when compared to
Alice and Bob (both have only one cell with positive Z-score).
Therefore, EBD can serve as a more precise measure of the
extent of knowledge of a developer when fine-grained edit data
is available.

TABLE V. EXPERTISE AND Z-SCORE AT FILE LEVEL

Project FileA.java FileB.java FileC.java
Alice 3 (1.41) 0 (-1.34) 1 (-0.71)

Carlos 1 (-0.71) 3 (1.07) 3 (1.41)
Bob 1 (-0.71) 2 (0.27) 1 (-0.71)

 Our approach can perform (expertise) analysis at different
levels of granularity by using the appropriate composition
matrix. Here we discussed how we can identify expertise of
developers for the project by recursively considering edits from
the method level (EBDM) to the file level and then to the pro-
ject level. We can follow a similar strategy to identify experts
for the project by analyzing edits directly from the file level
(EBDF). The only difference is that the latter considers files as
atomic elements and does not take into account location of
edits. That is, it computes the EBD of the whole project based
on the ED of each file by considering the positive Z-score
values.

 Considering our example, if we were going to simply use
ED for determining expertise for the project, that is, the person
who has made the most changes to the project as the expert,
then Bob would be considered the expert, followed by Alice,
and then Carlos (see Table I). However, when considering

411

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:19:57 UTC from IEEE Xplore. Restrictions apply.

EBDF, we see that Alice, Carlos, and Bob all have the same
knowledge in the project, as counting the number of files modi-
fied above the mean by all of them amounts to one in Table II.
However, when using EBDM, we notice that Carlos has the
highest expertise, as he is the expert in two out of three files,
while the others are expert in only one out of three files, as
shown in Table V. Therefore, a deeper analysis at a finer-grain
could unveil which developers have breadth of expertise over a
large number of methods in the file, and, consequently, should
be indicated as an expert of the file. Recursively, developers
that have breadth of expertise over a large number of files in
the project should be indicated as an expert of the project.

B. Time Matters
As a project evolves, it is possible that developers take on

different roles or move to different parts of a project. Typical
archival analyses for expertise identification do not take project
evolution into consideration [5], [6]. As a result of this, devel-
opers who had made frequent changes in the past, but are no
longer active and are therefore uninformed of the current pro-
ject structure, may still be recommended as experts.

We use the notion of a tridimensional matrix, which repre-
sents the whole project history and is composed of multiple
slices, to consider evolution. Each slice represents a snapshot
of the history at a certain point in time. A question that then
arises is how should we create a slice to depict the history. On
the one hand, humans tend to discretize and think of expertise
in terms of time; therefore, we can use time intervals (weeks,
months, etc.) to discretize experience. However, on the other
hand, the project structure evolves as a sequence of commits
(i.e., if no commit is performed in weeks or months, no evolu-
tion will be perceived). We reconcile these two factors by
computing a slice per unit of time (e.g., one slice per month),
but in terms of a sliding window that comprises a set of com-
mits performed before each slice. We define the size of the
sliding window as presented in Equation 2.

𝑠𝑙𝑖𝑑𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 = 𝑀𝑎𝑥(𝑀𝐴𝑀,𝑀𝐿𝐶) ∗𝑀 (2)

Where MAM represents the number of commits in the most
active month of the project history; MLC represents a mini-
mum limit of commits per window, independently of how
active a project might be; and M represents a multiplier to
allow users to experiment with different window sizes. We
identify the number of commits that were performed in the
most active month (MAM) of the project and use that as the
default size of the sliding window over which we collect com-
mits. As previously explained, we did not simply choose a
month as the window size since in open source projects the
amount of activity in a given month fluctuates and we wanted
to use a constant window size across our calculations. This
implies that when we create slices for months that have less
activity than the most active-month, they will involve commits
from the previous month(s). This is in fact desirable, since
having the window overlap across slices smoothens out sharp
fluctuations and equally represents the effects of changes over
expertise. However, since it is possible that a (small) project
might not have a month with enough activity to create an ap-
propriate window size, we use a floor for the minimum number
of commits (MNC) that are used to create a slice.

In our illustrative example, performing expertise analysis
over such slices might show that Alice has had the highest
expertise in FileC.java (see layer 1 in Fig. 1), but as we visit
subsequent slices we see that the expertise shifts, with Carlos
being the expert in the last window (layer 3 in the Fig. 1) of the
project. Such a time-based analysis can show when an exper-
tise handover occurs in a project (e.g., between periods 2 and 3
Alice makes much fewer edits to the FileC.java and Carlos
assumes development for that file). Such analysis can, there-
fore, identify points when developers started acquiring exper-
tise, how long it took them to gain expertise to the extent of the
previous expert, and for how long a developer’s expertise is
valid (as software changes, past expertise naturally loses
strength). Therefore, our approach allows more nuanced inves-
tigation of expertise.

FIG. 1. [DEVELOPER|FILE|TIME] BLOCK WITH LAYERS IN THE BACK DENOTING

RECENCY .

C. Speed Matters
 Processing the aforementioned matrices for large projects,
with tens of thousands of artifacts, hundreds of developers, and
many years of duration, would require parallel processing
instead of a traditional CPU-based architecture. For this reason,
we adopted Dominoes [8] to process the matrices for expertise
analysis. Due to its GPU-based solution, Dominoes can process
large amount of data efficiently.

 Dominoes first mines Git (version control repository) to
extract the basic relationships among project elements and
store them into a relational database (SQLite). It extracts the
author and code churn for each commit and then uses the ab-
stract syntax trees (AST) to identify the methods that these
changed lines of code belong to. It also extracts the composi-
tion structure (packages / files / classes / methods) from the
AST. New commits performed on a repository are added and
processed incrementally as Dominoes stores the time of the last
commit that was processed. After importing a repository, Dom-
inoes represents such relationships as binary matrices called
basic building blocks: [developer|commit] (DC), [com-
mit|method] (CM), [class|method] (ClM), [file|class] (FCl), and
[package|class] (PCl). Dominoes also allows several operations
over data, such as linear transformations (e.g., multiplication
and transposition of matrices) and statistics transformations
(e.g., Z-score). This way, basic building blocks can be further
combined to yield derived blocks that allow exploration of
derived project relationships (e.g., [developer|method] = [de-
veloper|commit] x [commit|methods]).

 We extended Dominoes in this work to include a third
dimension to represent time (e.g., [developer|method|time]
(DMT)). Its construction is based on the desired relationship,
granularity, and timeframe. It basically runs multiple construc-

412

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:19:57 UTC from IEEE Xplore. Restrictions apply.

tions of a given bi-dimensional block (e.g. [developer|method])
for a timeframe (e.g., month), saving them as layers in the 3D
block. The timeframe allows us to group data into layers to
enable tracking of a project evolution or allow a user to per-
form an analysis over a unit of time that they care about. The
layers in the tridimensional matrix can be data that is grouped
by month, week, day, or even a specific number of commits.

In order to allow efficient computation, Dominoes tailored
the aforementioned data transformations into a Single Instruc-
tion Multiple Thread (SIMT) architecture, making it possible to
process the data in GPU devices. Therefore, when a matrix
manipulation is needed, Dominoes forks its execution by trig-
gering the respective asynchronous GPU code (called kernel)
according to the desired operation.

A GPU kernel is implemented in CUDA, a proprietary
Nvidia programming library based on C, and is targeted to be
executed only over GPUs. Essentially, a CUDA kernel is a
function that generates thousands of parallel threads at the
GPU device. While all these threads must work over the same
code, they operate at different parts of the data. Since modern
GPUs can have thousands of cores, when the data is correctly
distributed, it is possible to achieve speed-ups of two or even
three orders of magnitude when compared with traditional
multi-core CPUs [14], depending on the nature of the problem.
Modeling the data structure as matrices allows optimal paral-
lelization, especially in the case of operations that have only
local data dependencies, as is in our case.

Linear transformations are defined primarily for bi-
dimensional building blocks (3D blocks are iteratively con-
structed per layer). Due to data independence, matrix opera-
tions such as transposition and addition are performed in the
GPU by 𝑁 𝑥 𝑀 parallel threads, where 𝑁 and 𝑀 represents the
block dimension in rows and columns, respectively. This inde-
pendence among rows and columns allows an acceleration
directly proportional to the number of available arithmetic
cores, when correctly dealing with cached data [15]. Since
GPUs may have up to 2000 cores in a single card, it is possible
to achieve speed ups of more than 200 times when compared
with multi-core CPU architectures [16] for this kind of opera-
tion. Additionally, the Z-score operation is defined in GPU for
both bi- and tri-dimensional building blocks. Calculating the Z-
score requires calculating the mean and standard deviation for
each artifact and all commits in a time frame, which can be
parallelized reaching O (log n) complexity [17]. Summing up
values in GPU is known as prefix-sum and can be modeled as a
parallel reduction problem. The Z-score operation in Dominoes
is performed by using Thrust [18], an open source parallel
algorithm library.

III. EVALUATION
In this section, we present an evaluation of our approach by

focusing on the following aspects: (1) fine-grained analysis, (2)
analysis based on timeframes, and (3) the use of GPU pro-
cessing. We used the open source project Apache Derby as our
evaluation subject. All analyses were performed over the data
extracted from the Derby repository between Aug 2004 and Jan
2014, which comprises 7,573 commits, 36 unique developers,
34,335 file changes, and 305,551 method changes. Apache
Derby 10.11.1.1 comprises a total of 2,864 java files with an

average of 398 lines of code each. Additionally, we observed
that the author of a change is always the committer in the Der-
by repository, therefore, we only use commit information when
determining expertise.

We performed three experiments. The first two experiments
analyze how granularity and time may affect the identification
of expertise. The third experiment evaluates the scalability of
our approach in processing large projects.

A. Granularity
We contrast analyses using fine-grain versus coarse-grain

data when identifying expertise in the Derby project by: (1)
computing ED and EBD metrics for each file and (2) compar-
ing the experts for each file based on these metrics. ED and
EBD metrics diverged in 977 files, amounting to a 28% differ-
ence in expertise calculations. As previously discussed, this
difference is a result of how ED is calculated: summing up the
number of times a developer edited a file. Because of this, even
if a developer has worked on only very specific parts of the
file, she is considered an expert for the entire file. This is how
expertise is normally identified [5], [10], [11] by current ap-
proaches, potentially leading to imprecision in the recommen-
dations.

To demonstrate the difference when we calculate expertise
at the coarse-grain (ED) versus at the fine-grain (EBD), let us
consider the file “CreateAliasConstantAction.java” in the Der-
by project. This file comprises only one class with four meth-
ods: (1) CreateAliasConstantAction(), (2) executeConstantAc-
tion(), (3) toString(), and (4) vetRoutine(). Table VI presents the
expertise (ED) of two developers who edited this file the most.
The mean (1.88) and standard deviation (1.91) were computed
out of 17 commits made by 9 developers who edited the file in
total.

On the other hand, TABLE VII presents the expertise breadth
(EBD) of the same two developers from Table VI as well as
the number of commits, mean, and standard deviation in order
to highlight the difference between ED and EBD. It is im-
portant to note that ED basically represents the number of
commits and Z-score of each developer over the file. For in-
stance, 7 commits are equivalent to 2.67 standard deviations
above the mean and 3 commits are equivalent of 0.58 standard
deviations above the mean.

When we calculate expertise based on the number of com-
mits that each developer made to this file, we see that djd has a
higher expertise (ED) when compared to rhillegas. However,
when using EBD we find that rhillegas has a higher expertise
breadth in the file. The numbered columns show the absolute
and Z-score (in parentheses) commits for each method. The
last column shows the absolute and Z-score (in parentheses)
EBD values for the whole file. As previously discussed, the
absolute EBD at file level is the number of methods each de-
veloper has modified above the mean (above zero Z-score). In
this case, it is possible to see that djd has modified just one
method above the mean (CreateAliasConstantAction()), while
rhillegas has modified all of the methods above the mean.
Consequently, we can consider that rhillegas (EBD value of 4)

413

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:19:57 UTC from IEEE Xplore. Restrictions apply.

has a wider knowledge over this file than djd (EBD value of
1).

TABLE VI. ABSOLUTE AND STANDARD SCORE EXPERTISE OF A DEVELOPER
(ED) FOR CREATEALIASCONSTANTACTION.JAVA

Developer Absolute ED Z-score ED
djd 7 2.67

rhillegas 3 0.58

TABLE VII. ABSOLUTE AND STANDARD SCORE EXPERTISE BREADTH OF A
DEVELOPER (EBD) FOR CREATEALIASCONSTANTACTION.JAVA

Developer Method 1 Method 2 Method 3 Method 4 EBD
djd 1 (-0.57) 2 (0.30) 1 (-0.57) 0 (-0.16) 1 (-1.00)

rhillegas 2 (1.73) 3 (1.50) 2 (1.73) 1 (1.00) 4 (1.00)
Total Commits 5 7 5 1 -
Mean / St. Dev. 1.25 / 0.43 1.75 / 0.89 1.25 / 0.43 1.0 / - -

It is important to note that, because we are using a fine-

grained approach for calculating EBD, we are able to distin-
guish between modifications that change the method body, as
compared to modifications that do not affect methods (e.g.,
inserting comments or import statements). For instance, in our
example we find that djd has committed to the file seven times.
However, of these only four changes affected methods. On the
other hand, rhillegas committed the file three times, but each
commit changed more than one method (e.g., Method 2 was
modified by all three commits). Therefore, when analyzing
commits per file, djd would be considered an expert, whereas
using the fine-grained EBD view, we see that rhillegas has a
broader expertise. In fact, rhillegas has changed each individu-
al method more times than djd (i.e., rhillegas dominates djd in
all methods).

Next, we calculate expertise for the file, EmbedConnec-
tion.java, since it is a large file (comprises 135 methods) and
has been edited extensively. Table VIII shows the difference
when comparing ED and EBD for this file. From this table, we
see that djd has the most edits to the file (ED). However, he
only touched 18 methods (EBDM), leading to a low Z-score. In
contrast, kristwaa committed to this file only 8 times (ED), but
her modifications touched 22 methods (EBD), leading to a
higher Z-score when compared to djd. We find that rhillegas
has the highest expertise since he edited 59 methods.

Finally, bpendleton appears in Table VIII with two com-
mits in the ED list. However, one of his commit was made
because of import modifications (not considered when calculat-
ing EBD), and the other commit touched just one method.
Therefore, he does not appear in the EBD list. In contrast, coar,
who has just one commit (and 15th position in the ED list), has
modifications to 56 methods (2nd position in the EBD list) since
he was responsible for the initial code creation.

The same approach can be applied at the project level to
identify expertise when considering the entire project history.
There are three ways in which we can calculate this, as dis-
cussed in Section Error! Reference source not found.. First,
we calculate the total number of commits performed by each
developer in the project (ED column) as shown in Table IX.
That is, we count the number of commits that has been made in
the project by a developer. This metric follows the intuition
that the more commits a developer has made to a project, the
more knowledge she has about the project.

Second, we calculate EBD for the project by aggregating
changes at the file level (i.e., we give expertise credit to a de-
veloper for each file, in which she has Z-score of commits
above zero for that file). We call this EBDF. The intuition here
is that to be considered an expert, a developer must have
changed a file more than average, and that information is ag-
gregated for the project.
TABLE VIII. TOP EXPERT DEVELOPERS AT FILE EMBEDCONNECTION.JAVA BY

ED AND EBDM

Dev. ED Z-score Dev. EBDM
(Method Level)

djd 21 2.28 rhillegas 59 2.04
kahatlen 19 1.98 coar 56 1.89
rhillegas 16 1.53 kahatlen 50 1.59
oysteing 14 1.23 kristwaa 22 0.21

dag 10 0.63 dag 22 0.01
kristwaa 8 0.33 djd 18 0.01
kmarsden 6 0.03 oysteing 18 0.10
abrown 2 -0.56 kmarsden 8 -0.47

bpendleton 2 -0.56 bernt 4 -0.67
lilywei 2 -0.56 bandaram 2 -0.77

bandaram 2 -0.56 lilywei 2 -0.77
bernt 1 -0.71 tmnk 1 -0.82

davidvc 1 -0.71 suresht 1 -0.82
dyre 1 -0.71 abrown 1 -0.82
coar 1 -0.71 mamta 1 -0.82

mamta 1 -0.71 dyre 1 -0.82
bakksjo 1 -0.71
suresht 1 -0.71
tmnk 1 -0.71

Finally, we calculate EBD for the project by aggregating

changes from the method level (EBDM). That is, we give ex-
pertise credit to a developer for a file if she has a Z-score above
zero when considering changes to methods of that file. The
intuition here is that a developer is considered an expert in a
file if she has breadth of knowledge in that file (Zscore > 0),
and this is recursively computed for the project.

When we compute the top 10 experts in the project, we see
that kahatlen appears as the highest expert in the project when
considering the ED measurement. However, in EBDF and
EBDM he moves to the 3rd position. Conversely, djd assumes
the 1st position for both EBDF and EBDM measures, which
means that djd has more breadth in knowledge across the
whole project than kahatlen. This clearly shows that calculat-
ing expertise by simply computing the number of commits
performed by a developer can yield very different results.
Moreover, coar, who appears in the 5th and 2nd positions in
EBDF and EBDM, respectively, does not even appear in the ED
list. The same situation occurs with dag, who moves from the
8th position according to both ED and EBDF to the 5th position
when considering EBDM. Also note that bandaram (colored in
green) in the EBDM list does not appear in either ED or EBDF
lists. On the other hand, two other developers in EDBF list
(bakksjo and davidvc, colored in red) do not appear in the
EBDM list. This shows that many developers make edits to
only some portions of the file and may not have expertise over
the majority of the methods in a file.

Another interesting case occurs when we consider bakksjo,
who is at the 4th position in the EBDF list with a Z-score of
1.52. When considering EBDM, he falls down to 26th position
in this list (not shown in Table IX), presenting a value of 8 and
a Z-score of -0.61. This happens because bakksjo has modified

414

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:19:57 UTC from IEEE Xplore. Restrictions apply.

over 1300 files. However, most of his changes introduced
comments and copyright modifications, without any function-
ality changes in the code. This is another example of how
simply calculating edits to a file may not be the right approach
to identifying expertise on that file. These results show how
fine-grained analyses at the method level can provide a more
nuanced view of expertise. Consequently, another advantage of
analyzing edits at the method level is the ability to filter out
non-code related changes. Previous research has used commit
size as a mechanism to filter out copyright and other non-code
related changes [7], [19]. Our results show that that analyzing
edits at the method level provides a more accurate means of
filtering out these ancillary commits.

TABLE IX. TOP 10 EXPERT DEVELOPERS BY ED, EBDF
 AND EBDM

CONSIDERING ABSOLUTE AND Z-SCORE VALUES

Dev. ED Dev. EBDF
(File Level) Dev. EBDM

(Method Level)
kahatlen 1393 djd 1846 2.61 djd 1533 3.42

djd 1190 rhillegas 1780 2.49 coar 1244 2.66
rhillegas 990 kahatlen 1556 2.08 kahatlen 1047 2.13
kmarsden 650 bakksjo 1252 1.52 rhillegas 960 1.90
kristwaa 640 coar 1210 1.45 dag 631 1.03

fuzzylogic 412 kristwaa 1045 1.15 kmarsden 467 0.60
myrnavl 385 fuzzylogic 893 0.87 kristwaa 403 0.43

dag 331 dag 879 0.84 bandaram 361 0.32
mikem 284 davidvc 866 0.82 fuzzylogic 322 0.21
mamta 282 bpendleton 823 0.74 bpendleton 1245 0.01

B. Time
Another important aspect to consider when analyzing ex-

pertise is time. As software and people change over time, it is
expected that expertise also evolves. The Apache Derby pro-
ject, which is a long living and active project with a 10-year
history, is not an exception. We analyze expertise evolution
through two studies, which analyze changes in expertise: (1) in
one particular file, and (2) the entire project. For both analyses
we group commits by using Equation (2).

We select the file EmbedConnection.java to measure exper-
tise evolution when considering a single file, because it was the
third most committed file in the project and was “touched” by a
large number of developers. When calculating the size of the
sliding window for the analysis (see Equation 2), MAM equals
to 11, as this was the number of commits that occurred in the
most active month, which was Feb 2008. MNC equals to 10, as
we believe this provides a sufficiently large slice of data over
which to perform analysis. Note that our choice of MNC does
not influence the results, as it is lower than MAM. We did not
change the M factor; therefore, our sliding window size is 11.

We derive the [Developer|Method] blocks for each layer,
based on the aforementioned sliding window and stack them to
create a [Developer|Method|Time] 3D block for the Embed-
Connection.java. We then compute a time-based EBD for it.

Fig. 2 shows the graph of EBD evolution of developers
who have edited EmbedConnection.java. We observe that djd
was the most active developer for almost half a year. Then,
onwards kahatlen assumed expertise for almost a year, fol-
lowed by rhillegas, both relinquishing their expertise at the
same time. The graph shows that rhillegas, after almost three
years since the beginning, starts to become an expert again in
this file. A few months after this oysteing’s expertise starts to

decline. At the end, rhillegas can be considered the expert in
this file. Note that if we were to determine an expert for the file
by using ED (and over the entire project) djd would be consid-
ered the expert (Table VIII). On the other hand, when we con-
sider the evolution of expertise (using EBD), we find that rhil-
legas has the most expertise breadth at the end.

FIG. 2. DEVELOPER BREADTH EXPERTISE FOR FILEEMBEDCONNECTION.JAVA.

For the second study (temporal analysis of expertise across
the project as a whole), when we consider the sliding window
for analysis we group commits by setting MAM to 270 (Equa-
tion 2). This was the maximum number of commits that oc-
curred in the most active month (Aug 2006). We set MNC to
100, as we believe this provides a sufficiently large slice of
data over which to perform analysis. Again, our choice of
MNC does not influence the results, as it is lower than MAM.
Also, the M factor was not changed, leaving the sliding win-
dow size to 270.

We then compute EBD for the entire project by considering
each time slice. Here we show the results of our analysis of the
top five developers in terms of EBD in Table IX.

Fig. 3 shows evolution of EBD of these developers. In this
graph, we find that djd was the main developer in the begin-
ning of the project, together with coar. Almost a year and a
half later, rhillegas and kahatlen start to contribute more exten-
sively to the project, increasing their expertise. Four years
after the start of the project, djd leaves the project and rhillegas
takes over the development. In the fifth year of the project
rhillegas has his first month with EBD higher than two stand-
ard deviations above the mean (higher dashed line). While
rhillegas still remains very active, after six years kahatlen
seems to supersede rhillegas in terms of EBD. This clearly
contrasts with the results presented in Table IX. When we do
not consider evolution, djd would be considered the main ex-
pert.

Finally, dag appears as the leading expert in Derby’s recent
years (superseding kahatlen), but had less activity in the earlier
years. His expertise hardly even crossed one standard deviation
above mean (lower solid single line) during the project. Never-
theless, he was an active developer. However, when analyzing
over the entire project history, dag (see Table IX ED column)
is classified as the 8th expert in the project.

415

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:19:57 UTC from IEEE Xplore. Restrictions apply.

C. Performance
Our approach has been designed to enable online explorato-

ry analysis over large-scale software engineering data. It makes
efficiency of computation an underlying requirement. In this
section, we provide some benchmarks contrasting our approach
using Dominoes with an equivalent tool in CPU. This tool was
specifically developed to allow comparison of optimal CPU
implementations with our GPU implementation.

FIG. 3. DEVELOPER BREADTH EXPERTISE FOR THE WHOLE PROJECT.

In order to make a fair comparison, all linear transfor-
mations and matrix operations in CPU are made in
OpenBLAS2, an open source implementation of BLAS (Basic
Linear Algebra Subprograms) API with many handcrafted
optimizations for specific processor types. OpenBLAS is able
to decompose a BLAS operation into smaller “kernel routines”
and is thus able to use all available CPU cores during its pro-
cessing, thereby making it a fair comparison. We experimented
both tools with different matrix sizes, providing evidences
regarding scalability. We use the Speed up metric, defined in
Equation (3) to measure how fast GPU is in relation to CPU.

𝑆𝑝𝑒𝑒𝑑 𝑈𝑝 =
𝑇𝑖𝑚𝑒!"#

𝑇𝑖𝑚𝑒!"#
 (3)

In this experiment, we used a PC equipped with an Intel
Core 2 Quad Q6600 using 8 GB of RAM and an nVidia Ge-
Force GTX 580 model, which has 16 Stream Multiprocessor
with 512 Stream Processor each.

The initial (full) loading of all commits into the database
required 15 minutes in order to create the AST, while the par-
ser to identify all changed methods took about 208 minutes.
However, we reiterate that this process occurs only once, as
future commits are processed in an incremental way. After that,
we measure the total time spent to process the 3D building
block introduced in Section II.B at the coarse level ([Develop-
er|File|Time]). This block comprises 114 layers of a 36 x 3400
([Developer|File]) matrix (a total of 13,953,600 elements).
Building this block from Dominoes’ database takes 2.38 se-
conds. On the other hand, composing a 3D building block at
fine grain level ([Developer|Method|Time]) takes about 189.96
seconds, comprising of 114 layers of 36 x 43,788 matrices
([Developer| Method]) each. Building block generation is al-
ways done in CPU, as it is a query over the database.

2 OpenBLAS: http://www.openblas.net

Processing the Z-score requires calculating the mean and
standard deviation of each layer and then computing the Z-
score itself. Table X shows the times taken to calculate EBD.
In the first column (“EBD when Considering Files”), we show
the time necessary for creating a 3D block for the entire project
when considering files as the unit of analysis. The total time
taken to process all layers (“Total” column) is 303.42 versus
19.59 seconds when comparing between CPU and GPU, re-
spectively. Therefore, we have a speed up of 15.48 times in
relation to CPU. In the second column (“EBD when Consider-
ing Methods”), we also calculate EBD for the entire project,
but this time considering methods as the unit of analysis. The
total time taken to process all layers (“Total” column) is
1,998.31 and 212.01 for CPU and GPU, respectively, achiev-
ing a speedup of 9.42 in relation to CPU.

The results show that a large difference in performance can
be achieved when we perform the same analysis in GPU as
compared to using CPU, even when the latter employs optimal
algorithms provided by OpenBLAS. It is important to note that
we used a conventional and affordable GPU card when running
the experiments. Replacing this card with a more powerful
card, such as nVidia Tesla K40, could easily further boost
Dominoes performance. The nVidia Tesla K40, the most pow-
erful GPU at the time of writing of this paper, provides at least
20 times more computational power.

TABLE X. PROCESSING TIME (IN SECONDS) FOR CALCULATING 3D BUILDING
BLOCKS FOR EBD IN THE PROJECT

 EBD WHEN CONSIDERING
FILES

EBD WHEN CONSIDERING
METHODS

 Mean &
SD Z-Score Total Mean &

SD Z-Score Total

CPU 2.19 301.23 303.42 424.71 1,573.60 1,998.31
GPU 0.10 19.49 19.59 8.55 203.46 212.01
Speed

Up 21.90 15.45 15.48 49.67 7.73 9.42

IV. THREATS TO VALIDITY
The divergence of expertise from expertise breadth that we

observed is largely based on the Apache Derby project. We
selected Apache Derby because it has a large, active contribu-
tor base. It is possible that other projects might not have as
much as deviation in expertise breadth. We need further studies
of other projects to observe whether such deviation between
expertise and expertise breadth holds true. A central construct
in our analysis is that if someone edits a method, we assume
that the developer has a certain degree of knowledge of that
method. However, since other approaches also use number of
edits as a proxy for knowledge, this is not a major threat. Fur-
ther, our analysis filters out non-source changes to the method
(or file).

Another threat in our study is that we use Z-scores to iden-
tify expertise, which assumes a normal distribution. Project
data might not be normal. However, since we use Z-scores to
identify developers who have made edits more than the average
number of times, non-normality of our data should not be a
problem. In the worst case, the Z-score provides us a ranking
(even if some developers have negative scores) with a percep-
tion of the distance among data points in the sample.

416

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:19:57 UTC from IEEE Xplore. Restrictions apply.

V. RELATED WORK
This section present related works divided into three

groups: (1) research that deal with expertise identification, (2)
infrastructures for repository analysis and (3) infrastructure
focused on speeding up data analysis.

McDonald and Ackerman [7] designed Expertise Recom-
mender (ER), which is based on two heuristics for recommend-
ing developers for specific tasks: tech support and change
history. The tech support heuristic uses an issue database to
search for similar past task and recommends developers in-
volved in the previous tasks. The change history heuristic
states that the last person that changed an artifact is a good
candidate for changing it again. Unfortunately, the latter heu-
ristic puts an extremely high weight on recent changes and
ignores the past. Our approach uses the entire history of a re-
pository, but segregate this history into timeframes that allow
the perception of how expertise fluctuates over time.

Gîrba et al. [19] defined an “Ownership Map” visualization
to understand when and how different developers interacted
and in which parts of the code, as well as define who a file
belonged to and for how long. In their approach, lines of code
added/removed by each developer are counted to determine
ownership. A developer who owns (made the latest edit) the
most number of lines in the file is considered the owner of the
file. It does not take into account the syntactic structures of the
file (such as classes or methods) and is influenced by non-
functional changes like comments. Our approach, in contrast,
can detect changes at different granularities as well as ignores
non-functional changes.

Anvik et al. [4] proposed an approach to recommend de-
velopers for a specific issue by using machine learning tech-
niques exclusively over an issue database. This way, the infor-
mation provided does not take into account artifacts’ modifica-
tions in order to suggest a developer who is the most appropri-
ate to change specific artifacts. Our focus is different, as we
identify expertise over artifacts (e.g., files, project).

Posnett et al. [20] considers both artifact and developers
perspectives in order to extract focus and ownership for com-
puting a unified score: DAF (developer attention focus), which
measures how focused is a developer during his task (i.e., their
work is spread among many artifacts or more focused). In
contrast, EBD measures the breadth of expertise of a developer
in specific artifacts (or the project).

Schuler and Zimmermann [21] proposed an approach for
measuring expertise by the frequency in which a developer
uses a method. While this information can help identify a per-
son who knows how to use a method, it might not help in iden-
tifying the developer who knows that method the best, that is,
the person who is the most appropriate to edit that method.
Instead, our approach uses modifications inside a method for
proposing experts in a file.

Additionally, infrastructure to facilitate automated expertise
identification through repository exploration exists. For exam-
ple, Minto and Murphy [5] introduced the Emergent Expertise
Locator (EEL). EEL is based on the framework by Cataldo et
al. [6] for matrix manipulation, thus requiring massive linear
operations to be performed depending on the size of the pro-

ject. To avoid this problem, EEL imposes a constraint over
matrix size, allowing only matrices up to 1,000 × 1,000 to be
used. Besides that, EEL uses coarse-granularity (i.e., files) to
recommend experts. However, the problem of personnel allo-
cation becomes harder for large projects, with much more than
1,000 files. Moreover, assuming files as atomic units may lead
to inadequate recommendations, as changes in very specific
parts of the file or broader changes in multiple parts are con-
sidered equivalent. Our proposed approach, on the other hand,
works at a fine grain (i.e., methods) to differentiate specific
changes from broader changes. This leads to large matrices that
need to be processed, which can be performed interactively
because of the underlying GPU architecture of Dominoes.

Kagdi et al. [3] proposed a system for assisting in the tasks
of allocating developers for changing a given file. It considers
three metrics to compose a ranked list of recommended devel-
opers: contribution, activity, and recency of changes. The con-
tribution metric indicates the number of commits each devel-
oper performed over the file. The activity metric indicates the
number of days the developer has committed at least once in
the project. The recency metric indicates the date of the last
commit of each developer. Similar to the previously discussed
approaches, this approach works at coarse grain (i.e., files) and
is not designed to support interactive exploratory analysis.

Research has produced several infrastructures designed for
repository analysis. For example, Kenyon [22], is a system that
integrates information originating from various repositories
into a single database for future analysis. Our approach takes a
step further and allows expertise analysis using data from the
repository at interactive speeds. Evolizer by Gall et al. [23]
allows analysis of software archives. It analyzes AST level
changes to identify different types of changes and modification
patterns. Our approach also uses AST to identify relevant
changes, but with the focus on expertise identification. Code-
Book by Begel et al. [24], creates a network that connect de-
velopers and artifacts by mining version control change logs,
emails, and other artifacts in a software repository. The under-
lying graph can then be used by applications to answer differ-
ent analysis questions (e.g., WhoseIsThat [25] identifies arti-
facts edited by a developer). Our approach uses matrices to
define software relationships and allows for incremental update
of data, which is not the case for CodeBook.

Finally, there exists research that aims to speed up reposito-
ry analysis. Boa [26] provides an infrastructure for analyzing
large scale software repositories on a cluster. Although its
performance may be comparable to Dominoes, setting up a
CPU cluster is not a trivial task, making it more applicable for
researchers in the university than for developers in the industry.
Jean-Rémy et al. [27] developed the Harmony platform, an
unified model that extracts and analyzes data at a coarse grain
from different version control systems. After extracting the
data to a database, the user is responsible for dealing with piec-
es of data to extract the desired information. These tools re-
quire the user to write a functional script to define what the
platform needs to process per analysis type. This can be a con-
straint, since end users will need to program their analysis and
write a script for each of their queries.

417

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:19:57 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION AND FUTURE WORK
Performing exploratory data analysis in software reposito-

ries has computational challenges. Here we show how our
approach can analyze fine-grained data, such as edits to classes
or methods to identify expertise in a project. Our results show
that when we consider expertise by only recognizing edits at
the file-level, we get a 28% deviation as compared to when we
analyze expertise based on the breadth of developers’
knowledge. Moreover, since we calculate changes at a fine-
grained level, we are able to filter out those changes that do not
affect the method body, thereby, being more precise in exper-
tise identification. In order to validate our results, we plan to
interview Derby managers and collect their interpretation about
expertise breadth versus depth. Additionally, we plan to con-
duct new exploratory data analysis in other projects.

We also introduce the concept of tri-dimensional matrices
of relationships across software project elements over time.
These matrices allow temporal analysis of relationships. When
identifying expertise in Apache Derby, we found that temporal
analysis shows the fluctuations in developer expertise for a
single file, as well as for the whole project. It also shows when
a developer stopped being active and “handed over” the exper-
tise to another. Had we considered the entire history of the
Derby project, the analysis would incorrectly recommend a
developer who was no longer active in the project.

We know that each method inside a class might not have
the same importance. For instance, get/set methods have a low
complexity to implement or maintain, when compared to other
functional methods (e.g., executeConstantAction). In the fu-
ture, we plan to use a weighting mechanism for methods ac-
cording to their complexity, which can then help us in identify-
ing experts not only on the breadth of their knowledge, but also
on the complexity of the changes that they have made. We also
plan to perform our analyses on other projects to generalize the
feasibility of our approach, as well as for showcasing differ-
ences when calculating expertise by considering low level
changes and breadth of changes. In addition, we plan to con-
duct a case study with industry managers to identify the usabil-
ity of our analyses and the presentation of the results.

Finally, using Z-score for data with a non-normal distribu-
tion can be a problem depending on the spread of the data. To
mitigate this problem, we plan to investigate the adoption of
the modified Z-score, which uses median and MAD (Median
Absolute Deviations) [28] instead of mean and standard devia-
tion.

REFERENCES
[1] J. D. Herbsleb and R. E. Grinter, “Splitting the Organization and

Integrating the Code: Conway’s Law Revisited” in 21st ICSE, 1999, 85–
95.

[2] A. Meneely and L. Williams, “Socio-technical Developer Networks:
Should We Trust Our Measurements?” in 33rd ICSE, 2011, 281–290.

[3] H. Kagdi, M. Hammad, and J. I. Maletic, “Who can help me with this
source code change?,” in IEEE ICSM, 2008, pp. 157–166.

[4] J. Anvik, L. Hiew, and G. C. Murphy, “Who Should Fix This Bug?,” in
28th ICSE, 2006, pp. 361–370.

[5] S. Minto and G. C. Murphy, “Recommending Emergent Teams,” in
Fourth International Workshop on Mining Software Repositories, 2007.
ICSE Workshops MSR ’07, 2007, pp. 5–5.

[6] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley,
“Identification of coordination requirements: implications for the Design
of collaboration and awareness tools,” in the 2006 20th anniversary
conference on Computer supported cooperative work, 2006, 353–362.

[7] D. W. McDonald and M. S. Ackerman, “Expertise Recommender: A
Flexible Recommendation System and Architecture,” in the 2000 ACM
Conference on CSCW, 2000, pp. 231–240.

[8] J. R. da Silva Junior, L. Murta, E. Clua, and A. Sarma, “Exploratory
Data Analysis of Software Repositories via GPU Processing” in 26th
SEKE, 2014.

[9] S. Rajasekaran, L. Fiondella, M. Ahmed, and R. A. Ammar, Multicore
Computing: Algorithms, Architectures, and Applications. New York,
NY: CRC Press, 2013.

[10] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical
congruence: a framework for assessing the impact of technical and work
dependencies on software development productivity,” in Proceedings of
the Second ACM-IEEE ESEM, 2008, pp. 2–11.

[11] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract:
Interactive visual exploration of socio-technical relationships in software
development,” in the 31st ICSE, 2009, pp. 23–33.

[12] J. Anvik and G. C. Murphy, “Reducing the Effort of Bug Report Triage:
Recommenders for Development-oriented Decisions,” ACM Trans
Softw Eng Methodol, vol. 20, no. 3, pp. 10:1–10:35, Aug. 2011.

[13] S. R. Carroll and D. J. Carroll, Statistics made simple for school leaders
data-driven decision making. Lanham, Md.: Scarecrow Press, 2002.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A Performance Study of General-purpose Applications on Graphics
Processors Using CUDA,” J Parallel Distrib Comput, vol. 68, no. 10, pp.
1370–1380, Oct. 2008.

[15] N. Corporation, NVIDIA CUDA C Programming Guide. 2014.
[16] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the

Efficiency of GPU Algorithms for Matrix-matrix Multiplication,” in The
ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, 2004, pp. 133–137.

[17] H. Nguyen and NVIDIA Corporation, GPU gems 3. Upper Saddle
River, NJ: Addison-Wesley, 2008.

[18] J. Hoberock and N. Bell, Thrust: A Parallel Template Library. 2010.
[19] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How Developers

Drive Software Evolution,” in PSE, 2005, vol. 0, pp. 113–122.
[20] D. Posnett, R. D'Souza, P. Devanbu, and V. Filkov, “Dual

Ecological Measures of Focus in Software Development,” in The 2013
International Conference on Software Engineering, 2013, pp. 452–461.

[21] D. Schuler and T. Zimmermann, “Mining Usage Expertise from Version
Archives,” in The 2008 International Working Conference on Mining
Software Repositories, 2008, pp. 121–124.

[22] J. Bevan, E. J. Whitehead Jr., S. Kim, and M. Godfrey, “Facilitating
Software Evolution Research with Kenyon,” in The 10th European
Software Engineering Conference, 2005, pp. 177–186.

[23] H. C. Gall, B. Fluri, and M. Pinzger, “Change Analysis with Evolizer
and ChangeDistiller,” IEEE Softw, vol. 26, no. 1, pp. 26–33, Jan. 2009.

[24] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: Discovering
and Exploiting Relationships in Software Repositories,” in The 32Nd
ACM/IEEE ICSE - Volume 1, 2010, pp. 125–134.

[25] A. Begel, K. Y. Phang, and T. Zimmermann, “WhoselsThat: Finding
Software Engineers with Codebook,” in The 18th ACM SIGSOFT FSE
2010, pp. 381–382.

[26] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A Language
and Infrastructure for Analyzing Ultra-large-scale Software
Repositories,” in the 2013 ICSE, 2013, pp. 422–431.

[27] J.-R. Falleri, C. Teyton, M. Foucault, M. Palyart, F. Morandat, and X.
Blanc, “The Harmony Platform,” CoRR, vol. abs/1309.0456, 2013.

[28] D. C. Howell, “Median Absolute Deviation,” in Encyclopedia of
Statistics in Behavioral Science, John Wiley & Sons, Ltd, 2005.

418

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:19:57 UTC from IEEE Xplore. Restrictions apply.

