
Can I Solve It? Identifying APIs Required to
Complete OSS Tasks

Fabio Santos,1 Igor Wiese,2 Bianca Trinkenreich,1 Igor Steinmacher,1, 2 Anita Sarma,3 Marco A. Gerosa1
1Northern Arizona University, USA, 2Universidade Tecnológica Federal do Paraná, Brazil,3 Oregon State University, USA

fabio santos@nau.edu, igor@utfpr.edu.br, bianca trinkenreich@nau.edu, igorfs@utfpr.edu.br
anita.sarma@oregonstate.edu, marco.gerosa@nau.edu

Abstract—Open Source Software projects add labels to open
issues to help contributors choose tasks. However, manually
labeling issues is time-consuming and error-prone. Current
automatic approaches for creating labels are mostly limited to
classifying issues as a bug/non-bug. In this paper, we investigate
the feasibility and relevance of labeling issues with the domain of
the APIs required to complete the tasks. We leverage the issues’
description and the project history to build prediction models,
which resulted in precision up to 82% and recall up to 97.8%.
We also ran a user study (n=74) to assess these labels’ relevancy
to potential contributors. The results show that the labels were
useful to participants in choosing tasks, and the API-domain
labels were selected more often than the existing architecture-
based labels. Our results can inspire the creation of tools to
automatically label issues, helping developers to find tasks that
better match their skills.

Index Terms—API identification, Labelling, Tagging, Skills,
Multi-Label Classification, Mining Software Repositories, Case
Study

I. INTRODUCTION

Finding tasks to contribute to in Open Source projects is
challenging [1, 2, 3, 4, 5]. Open tasks vary in complexity
and required skills, which can be difficult to determine solely
by reading the task descriptions alone, especially for new
contributors [6, 7, 8]. Adding labels to the issues (a.k.a tasks,
bug reports) help new contributors when they are choosing
their tasks [9]. However, community managers find that label-
ing issues is challenging and time-consuming [10] because
projects require skills in different languages, frameworks,
databases, and Application Programming Interfaces (APIs).

APIs usually encapsulate modules that have specific pur-
poses (e.g., cryptography, database access, logging, etc.), ab-
stracting the underlying implementation. If the contributors
know which types of APIs will be required to work on each
issue, they could choose tasks that better match their skills or
involve skills they want to learn.

Given this context, in this paper, we investigate the feasi-
bility of automatically labeling issues with domains of APIs
to facilitate contributors’ task selection. Since an issue may
require knowledge in multiple APIs, we applied a multi-
label classification approach, which has been used in software
engineering for purposes such as, classifying questions in
Stack Overflow (e.g., Xia et al. [11]) and detecting types
of failures (e.g., Feng et al. [12]) and code smells (e.g.,
Guggulothu and Moiz [13]).

By employing an exploratory case study and a user study,
we aimed to answer the following research questions:

RQ1: To what extent can we predict the domain of APIs
used in the code that fixes a software issue? To answer RQ1,
we employed a multi-label classification approach to predict
the API-domain labels. We also explored the influence of task
elements (i.e., title, body, and comments) and machine learning
setup (i.e., n-grams and different algorithms) on the prediction
model. Overall, we found that pre-processing the issue body
using unigram and Random Forest algorithm can predict the
API-domain labels with up to 82% precision and up to 97.8%
of recall. This configuration outperformed recent approaches
reported in the literature [14].

RQ2. How relevant are the API-domain labels to new
contributors? To answer RQ2, we conducted a study with
74 participants from both academia and industry. After asking
participants to select and rank real issues they would like to
contribute to, we provided a follow-up survey to determine
what information was relevant to make the decision. We
compared answers from the treatment group (with access to the
API-domain labels) with the control group (who used only the
pre-existing project labels). The participants considered API-
domain labels more relevant than the project labels—with a
large effect size.

These results indicate that labeling issues with API domain
is feasible and relevant for new contributors who need to
determine which issues to contribute.

II. RELATED WORK

New contributors need specific guidance on what to con-
tribute [9, 15]. In particular, finding an appropriate issue can be
a daunting task, which can discourage contributors [2]. Social
coding platforms like GitHub1 encourages projects to label
issues that are easy for new contributors, which is done by
several communities (e.g. LibreOffice,2 KDE,3 and Mozilla4)
However, community managers argue that manually labeling
issues is difficult and time-consuming [10].

Several studies have proposed ways to automatically label
issues as bug/non-bug, combining text mining techniques with

1http://bit.ly/NewToOSS
2https://wiki.documentfoundation.org/Development/EasyHacks
3https://community.kde.org/KDE/Junior Jobs
4https://wiki.mozilla.org/Good first bug

ar
X

iv
:2

10
3.

12
65

3v
1

 [
cs

.S
E

]
 2

3
M

ar
 2

02
1

http://bit.ly/NewToOSS
https://wiki.documentfoundation.org/Development/EasyHacks
https://community.kde.org/KDE/Junior_Jobs
https://wiki.mozilla.org/Good_first_bug

classification to mitigate this problem. For example, Antoniol
et al. [16] compared text-based mining with Naive Bayes
(NB), Logistic Regression (LR), and Decision Trees (DT)
to process data from titles, descriptions, and discussions and
achieved a recall up to 82%. Pingclasai et al. [17] used the
same techniques to compare a topic and word-based approach
and found F-measures from 0.68 to 0.81 using the topic-
based approach. More recently, Zhou et al. [18] used two-stage
processing, introducing the use of structured information from
the issue tracker, improving the recall obtained by Antoniol
et al. [16]. Kallis et al. [19] simplified the data mining step to
produce a tool able to classify issues on demand. They used the
title and body to create a bag of words used to classify issues
as “bug report”, “enhancement”, and “question”. El Zanaty
et al. [14] applied type detection on issues and attempted to
transfer learning to other projects using the same training data.
The best results had F-Measures around 0.64 - 0.75. Finally,
Xia et al. [11] employed a multi-label classification using text
data from Stack Overflow questions, obtaining recall from 0.59
to 0.77.

As opposed to these related work—which focuses mostly
on classifying the type of issue (e.g., bug/non-bug)—our
work focuses on identifying the domain of APIs used in the
implementation code, which might reflect skills needed to
complete a task.

Regarding APIs, recent work focuses on understanding the
crowd’s opinion about API usage [20], understanding and
categorizing the API discussion [21], creating tutorial sections
that explain a given API type [22], generating/understanding
API documentation [23, 24], providing API recommendations
[25, 26, 27], offering API tips to developers [28], and defining
the skill space for APIs, developers, and projects [29]. In
contrast to these previous work, we focus on predicting the
domain of the API used in the code that fixes an issue.

III. METHOD

This study comprises three phases, as summarized in Fig. 1:
mining software repository, building the classifiers, and evalu-
ating the API-domain labels with developers. To foster repro-
ducibility, we provide a publicly available dataset5 containing
the raw data, the Jupyter notebook scripts that build and test
the models, and the survey data.

We conducted an exploratory case study [30] using the
JabRef project [31] as our case study. JabRef is an open-source
bibliography reference manager developed by a community of
volunteers, including contributors with different background
and diverse set of skills (with and without computer science
background)—this helped us evaluate the approach with a
diverse set of contributor profiles. JabRef is a mature and
active project created in 2003 (migrated to GitHub in 2014),
with 15.7k commits, 42 releases, 337 contributors, 2.7k closed
issues, and 4.1k closed pull requests. JabRef has also been
frequently investigated in scientific studies [32, 33, 34, 35, 36].
We chose JabRef as our case study because of these character-
istics and because we have access to the project’s contributors.

5http://doi.org/10.5281/zenodo.4628599

Fig. 1. Research Design

A. Phase 1 - Mining JabRef Repository

We used the GitHub API to collect data from JabRef. We
collected 1976 issues and pull requests (PR), including title,
description (body), comments, and submission date. We also
collected the name of the files changed in the PR and the
commit message associated with each commit. The data was
collected in April 2020.

After collecting the data, we filtered out open issues and
pull requests not explicitly linked to issues. To find the links
between pull requests and issues, we searched for the symbol
#issue_number in the pull request title and body and checked
the URL associated with each link. We manually inspected
a random sample of issues to check whether the data was
correctly collected and reflected what was shown on the
GitHub interface. Two authors manually examined 50 issues,
comparing the collected data with the GitHub interface. All
records were consistent. We also filtered out issues linked
to pull requests without at least one Java file (e.g., those
associated only with documentation files). Our final dataset
comprises 705 issues and their corresponding pull requests.

We also wrote a parser to process all Java files from
the project. In total, 1,692 import statements from 1,472
java sources were mapped to 796 distinct APIs. The parser
identified all classes, including the complete namespace from
each import statement. Then we filtered out APIs not found
in the latest version of the source code (JabRef 5.0) to avoid
recommending APIs that were no longer used in the project.

Then, we employed a card-sorting approach to manually
classify the imported APIs into higher-level categories based
on the API’s domain. For instance, we classified “java.nio.x”
as “IO’, “java.sql.x” as “Database”, and “java.util.x” as
“Utils”’. A three-member team performed this classification
(first, second, and forth authors), one of them is a contributor
of JabRef and another one is an expert Java developer. They
analyzed the APIs identified in the previous step and each
person individually classified the API and discussed to reach
a consensus. After classifying all the APIs, the researchers
conducted a second round to revise the classification (∼8
hours). During this step, we excluded some labels and ag-
gregated some others. The final set of categories of API
domains contains: Google Commons, Test, OS, IO, UI, Net-
work, Security, OpenOffice Documents, Database, Utils, PDF,
Logging, and Latex. We used these categories as labels to

http://doi.org/10.5281/zenodo.4628599

the 705 issues previously collected based on the presence of
the corresponding APIs in the changed files. We used this
annotated set to build our training and test sets for the multi-
label classification models.

B. Phase 2 - Building the Multi-label Classifiers

1) Corpus construction: To build our classification models,
we created a corpus comprising issue titles, body, and com-
ments. We converted each word to lowercase and removed
URLs, source code, numbers, and punctuation. After that, we
removed stop-words and stemmed the words using the Python
nltk package. We also filtered issue and pull request templates6

since the templates were not consistently used among all the
issues. We found in our exploratory studies that their repetitive
structure introduced too much noise.

Next, similar to other studies [37, 38, 39], we applied TF-
IDF, which is a technique for quantifying word importance in
documents by assigning a weight to each word. After applying
TF-IDF, we obtained a vector for each issue. The vector length
is the number of terms used to calculate the TF-IDF plus the
13 labels in the dataset. Each label received a binary value
(0 or 1), indicating whether the corresponding API-domain is
present in the issue and each term received the TF-IDF score.

2) Training/Test Sets: We split the data into training and
test sets using the ShuffleSplit method [40], which is a model
selection technique that emulates cross-validation for multi-
label classifiers. We randomly split our 705 issues into a
training set with 80% (564) of the issues and a test set with the
remaining 20% (142 issues). To avoid overfitting, we ran each
experiment ten times, using ten different training and test sets
to match a 10-fold cross validation. To improve the balance
of the data set, we ran the SMOTE algorithm for multi-label
approach [41].

3) Classifiers: To create the classification models, we
chose five classifiers that work with the multi-label ap-
proach and implement different strategies to create learn-
ing models: Decision Tree, Random Forest (ensemble clas-
sifier), MPLC Classifier (neural network multilayer percep-
tron), MLkNN (multi-label lazy learning approach based
on the traditional K-nearest neighbor algorithm) [40, 42],
and Logistic Regression. We ran the classifiers using the
Python sklearn package and tested several parameters. For
the RandomForestClassifier, the best classifier (see Sec-
tion IV), we kept the following parameters: criterion =′

entropy′ ,max depth = 50, min samples leaf = 1,
min samples split = 3,n estimators = 50.

4) Classifiers Evaluation: To evaluate the classifiers, we
employed the following metrics (also calculated using the
scikit-learn package):
• Hamming loss measures the fraction of the wrong labels

to the total number of labels.
• Precision measures the proportion between the number

of correctly predicted labels and the total number of
predicted labels.

6http://bit.ly/NewToOSS

• Recall corresponds to the percentage of correctly pre-
dicted labels among all truly relevant labels.

• F-measure calculates the harmonic mean of precision
and recall. F-measure is a weighted measure of how
many relevant labels are predicted and how many of the
predicted labels are relevant.

• Matthews correlation coefficient - MCC calculates the
Pearson product-moment correlation coefficient between
actual and predicted values. It is an alternative measure
unaffected by the unbalanced dataset issue [43].

5) Data Analysis: To conduct the data analysis, we used the
aforementioned evaluation metrics and the confusion matrix
logged after each model’s execution. We used the Mann-
Whitney U test to compare the classifier metrics, followed
by Cliff’s delta effect size test. The Cliff’s delta magnitude
was assessed using the thresholds provided by Romano et al.
[44], i.e. |d|<0.147 “negligible”, |d|<0.33 “small”, |d|<0.474
“medium”, otherwise “large”.

6) Dataset Analysis: Multi-label datasets are usually de-
scribed by label cardinality and label density [40]. Label
cardinality is the average number of labels per sample. Label
density is the number of labels per sample divided by the
total number of labels, averaged over the samples. For our
dataset, the label cardinality is 3.04. The density is 0.25.
These values consider the 705 distinct issues and API-domain
labels obtained after the previous section’s pre-processing
steps. Since our density can be considered high, the multi-label
learning process or inference ability is not compromised [45].

For the remainder of our analysis, we removed the API label
“Utils,” since we found that this label was present in 96%
of the issues in our final dataset and has an overly generic
meaning. The API-domain labels “IO”, “UI”, and “Logging”
had 492, 452, and 417 occurrences respectively. These last
three labels occurred in approximately 60% of the issues. We
also observed that “Test”, “Network”, and “Google Commons”
appeared in almost 29% of the issues (212, 208, and 206
times). “SO”, “Database”, “PDF”, “Open Office”, “Security”,
and “Latex” were less common, with 56, 31, 21, 21, 20, and
14 occurrences respectively.

Finally, we checked the distribution of the number of labels
per issue (Fig. 2). We found 140 issues with five labels, 132
issues with three labels, 121 issues with two labels, and 117
issues with four labels. Only 8.5% of issues have one label,
which confirms a multi-label classification problem.

C. Phase 3 - Evaluating the API-Domain Labels with Devel-
opers

To evaluate the relevancy of the API-domain labels from a
new contributor’s perspective, we conducted an experimental
study with 74 participants. We created two versions of the
JabRef issues page (with and without our labels) and divided
our participants into two groups (between-subjects design). We
asked participants to choose and rank three issues they would
like to contribute and answer a follow-up survey about what
information supported their decision. The artifacts used in this
phase are also part of the replication package.

http://bit.ly/NewToOSS

1 2 3 4 5 6 7 8 9 10 11
Number of labels

0

20

40

60

80

100

120

140
Is

su
e

Fr
eq

ue
nc

y

Fig. 2. Number of labels per issue

1) Participants: We recruited participants from both in-
dustry and academia. We reached out to our own students
in addition to instructors and IT managers of our personal
and professional networks and asked them to help in inviting
participants. From industry, we recruit participants from one
medium-size IT startup hosted in Brazil and the IT department
of a large and global company. Students included under-
graduate and graduate computer science students from one
university in the US and two others in Brazil. We also recruited
graduate data science students from a university in Brazil,
since they are also potential contributors to the JabRef project.
We present the demographics of the participants in Table I. We
offered an Amazon Gift card to incentivize participation.

We categorized the participants’ development tenure into
novice and experienced coders, splitting our sample in half—
below and above the average “years as professional developer”
(4). We also segmented the participants between industry
practitioners and students. Participants are identified by: ”P”,
followed by a sequential number and a character representing
the location where they were recruited (University: U &
Industry: I); ”T” for Treatment and ”C” for Control groups.

TABLE I
DEMOGRAPHICS SUBGROUPS FOR THE EXPERIMENT’S PARTICIPANTS

Popu- Quan- Percent- Tenure Quan- Percent-
lation tity age tity age
Industry 41 55.5 Expert 19 25.7
Student 33 44.5 Novice 55 74.3

The participants were randomly split into two groups:
Control and Treatment. From the 120 participants that started
the survey, 74 (61.7%) finished all the steps, and we only
considered these participants in the analysis. We ended up with
33 and 41 participants in the Control and Treatment groups,
respectively.

2) Experiment Planning: We selected 22 existing JabRef
issues and built mock GitHub pages for Control and Treatment
groups. The issues were selected from the most recent ones,
trying to maintain similar distributions of the number of API-
domain labels predicted per issue and the counts of predicted
API-domain labels (see Section III-B6). The control group

Fig. 3. Survey question about the regions relevance

mocked page had only the original labels from the JabRef
issues and the treatment group mocked page presented the
original labels in addition to those API-domain labels. These
pages are available in the replication package.

3) Survey Data Collection: The survey included the fol-
lowing questions/instructions:

• Select the three issues that you would like to work on.
• Select the information (region) from the issue page that

helped you deciding which issues to select (Fig: 3).
• Why is the information you selected relevant? (open-

ended question)
• Select the labels you considered relevant for choosing the

three issues

The survey also asked about participants’ experience level,
experience as an OSS contributor, and expertise level in the
technologies used in JabRef.

Fig. 3 shows an example of an issue details page and an
issue entry on an issue list page. After selecting the issues
to contribute, the participant was presented with this page to
select what information (region) was relevant to the previous
issue selection.

4) Survey Data Analysis: Next, to understand participants’
perceptions about what information (regions) they considered
important and the relevancy of the API-domain labels, we
first compared treatment and control groups’ results. We used

violin plots to visually compare the distributions and measured
the effect size using the Cliff’s Delta test.

Then, we analyzed the data, aggregating participants ac-
cording to their demographic information, resulting in the
subgroups presented in Table I. We calculated the odds ratio
to check how likely it would be to get similar responses
from both groups. We used a 2x2 contingency table for each
comparison—for instance, industry practitioners vs. students
and experienced vs. novice coders. We used the following
formula to calculate the odds ratio [46]:

OddsRatio(OR) = (a/c)
(b/d)

Probabilities > 1 mean that the first subgroup is more likely
to report a type of label, while probabilities less than 1 mean
that the second group has greater chances (OR) [47].

To understand the rationale behind the label choices, we
qualitatively analyzed the answers to the open question (”Why
was the information you selected relevant?”). We selected
representative quotes to illustrate the participants’ perceptions
about the labels’ relevancy.

IV. RESULTS

We report the results grouped by research question.

A. RQ1. To what extent can we predict the domain of APIs
used in the code that fixes a software issue?

To predict the API domains identified in the files changed in
each issue (RQ1), we started by testing a simple configuration
used as a baseline. For this baseline model, we used only the
issue TITLE as input and the Random Forest (RF) algorithm,
since is insensitive to parameter settings [48] and is usually
yields good results in software engineering studies [49, 50, 51,
52]. Then, we evaluated the corpus configuration alternatives,
varying the input information: only TITLE (T), only BODY
(B), TITLE and BODY, and TITLE, BODY, and COMMENTS. To
compare the different models, we selected the best Random
Forest configuration and used the Mann-Whitney U test with
the Cliff’s-delta effect size.

We also tested alternatives configurations using n-grams.
For each step, the best configuration was kept. Then, we
used different machine learning algorithms comparing with
a dummy (random) classifier.

TABLE II
OVERALL METRICS (SECTION III-B-4) FROM MODELS CREATED TO

EVALUATE THE CORPUS. HLA - HAMMING LOSS

Model Precision Recall F-measure Hla
Title (T) 0.717 0.701 0.709 0.161
Body (B) 0.752 0.742 0.747 0.143

T, B 0.751 0.738 0.744 0.145
T, B, Comments 0.755 0.747 0.751 0.142

As can be seen in Table II, when we tested different inputs
and compared to TITLE only, all alternative settings provided
better results. We could observe improvements in terms of
precision, recall, and F-measure. When using TITLE, BODY,

Fig. 4. Comparison between the unigram model and n-grams models

and COMMENTS, we reached Precision of 75.5%, Recall of
74.7%, and F-Measure of 75.1%.

TABLE III
CLIFF’S DELTA FOR F-MEASURE AND PRECISION: COMPARISON OF

CORPUS MODELS ALTERNATIVES - SECTION III-B-1. TITLE(T), BODY(B)
AND COMMENTS (C).

Corpus Cliff’s delta
Comparison F-measure Precision
T versus B -0.86 large*** -0.92 large***
T versus T+B -0.8 large** -0.88 large***
T versus T+B+C -0.88 large** -0.88 large***
B versus T+B 0.04 negligible 0.04 negligible
B versus T+B+C -0.24 small -0.12 negligible
T+B versus T+B+C -0.3 small -0.08 negligible
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001

We found statistical differences comparing the results using
TITLE only and all the three other corpus configurations
for both F-measure (p-value ≤ 0.01 for all cases, Mann-
Whitney U test) and precision (p-value ≤ 0.001 for all
cases, Mann-Whitney U test) with large effect size. TI-
TLE+BODY+COMMENTS performed better than all others in
terms of precision, recall, and F-measure. However, the results
suggest that using only the BODY would provide good enough
outcomes, since there was no statistically significant differ-
ence comparing to the other two configurations—using TITLE
and/or COMMENTS in addition to the BODY— and it achieved
similar results with less effort. The model built using only
BODY presented only 14.3% incorrect predictions (hamming
loss metric) for all 12 labels. Table III shows the Cliff’s-delta
comparison between each pair of corpus configuration.

Next, we investigated the use of bi-grams, tri-grams, and
four-grams comparing the results to the use of unigrams. We
used the corpus with only issue BODY for this analysis, since
this configuration performed well in the last step. Fig. 4 and
Table IV present how the Random Forest model performs
for each n-gram configuration. The unigram configuration
outperformed the others with large effect size.

TABLE IV
CLIFF’S DELTA FOR F-MEASURE AND PRECISION: COMPARISON

BETWEEN N-GRAMS MODELS - SECTION III-B-5

n-Grams Cliff’s delta
Comparison F-measure Precision
1 versus 2 1.0 large*** 0.86 large***
1 versus 3 1.0 large*** 0.84 large***
1 versus 4 1.0 large*** 0.96 large***
2 versus 3 0.8 large** 0.18 small
2 versus 4 0.78 large** 0.72 large**
3 versus 4 0.12 negligible 0.62 large*
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001

Finally, to investigate the influence of the machine learn-
ing (ML) classifier, we compared several options using the
title with unigrams as a corpus: Random Forest (RF), Neu-
ral Network Multilayer Perceptron (MLPC), Decision Tree
(DT), LR, MlKNN, and a Dummy Classifier with strategy
“most frequent”. Dummy or random classifiers are often used
as baseline [53, 54]. We used the implementation from the
Python package scikit-learn [55]. Fig. 5 shows the comparison
among the algorithms, and Table V presents the pair-wise
statistical results comparing F-measure and precision using
Cliff’s delta.

Fig. 5. Comparison between the baseline model and other machine learning
algorithms

Random Forest (RF) and Neural Network Multilayer Per-
ceptron (MLPC) were the best models when compared to
Decision Tree (DT), Logistic Regression (LR), MlKNN, and
Dummy algorithms. Random Forest outperformed these four
algorithms with large effect sizes considering F-measure and
precision.

RQ1 Summary. It is possible to predict the API-domain
labels with precision of 0.755, recall of 0.747, F-measure of
0.751, and 0.142 of Hamming loss using the Random Forest
algorithm, TITLE, BODY and COMMENTS as the corpus, and
unigrams.

TABLE V
CLIFF’S DELTA FOR F-MEASURE AND PRECISION: COMPARISON
BETWEEN MACHINE LEARNING ALGORITHMS - SECTION III-B-5

Algorithms Cliff’s delta
Comparison F-measure Precision
RF versus LR 1.0 large*** 0.62 large*
RF versus MLPC 0.54 large* 0.88 large***
RF versus DT 1.0 large*** 1.0 large***
RF versus MlkNN 0.98 large*** 0.78 large***
LR versus MLPC -0.96 large*** 0.24 small
LR versus DT 0.4 medium 0.94 large***
LR versus MlkNN 0.5 large* 0.48 large*
MPLC versus DT 0.98 large*** 0.98 large***
MPLC vs. MlkNN 0.94 large*** 0.32 small
MlkNN versus DT -0.28 small 0.0 negligible
RF versus Dummy 1.0 large*** 1.0 large***
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001

B. RQ2. How relevant are the API-domain labels to new
contributors?

To answer this research question, we conducted an experi-
ment with 74 participants and analyzed their responses.

What information is used when selecting a task? Un-
derstanding the type of information that participants use to
make their decision while selecting an issue to work on can
help projects better organize such information on their issue
pages. Fig. 6 shows the different regions that participants
found useful. In the control group, the top two regions of
interest included the body of the issue (75.7%) and the title
(78.7%), followed by the labels (54.5%) and then the code
itself (54.5%). This suggests that the labels generated by the
project were only marginally useful and participants had to
also review the code. In contrast, in the Treatment group, the
top four regions of interest by priority were: Title, Label, Body,
and then Code (97.5%, 82.9%, 70.7%, 56.1%, respectively).
This shows that participants in the Treatment group found
the labels more useful than those participants in the Control
group: 82.9% usage in the Treatment group as compared to
54.5% in the Control group. Comparing the body and the label
regions in both groups, we found that participants from the
Treatment group selected 1.6x more labels than the Control
groups (p=0.05). The odds ratio analysis suggests that labels
were more relevant in the Treatment groups.

Qualitative analysis of the reason behind the choice of
participants in the Treatment group reveals that the Title and
the Labels together provided a comprehensive view of the
issue. For instance, P4IT mentioned: ”labels were useful to
know the problem area and after reading the title of the issues,
it was the first thing taken into consideration, even before
opening to check the details”. Participants found the labels to
be useful in pointing out the specific topic about the issue,
as P14IT stated: “[labels are] hints about what areas have
connection with the problem occurring”.

What is the role of labels? We also investigated which type
of labels helped the participants in their decision making. We
divide the labels available to our participants into three groups
based on the type of information they imparted.

Fig. 6. The regions counts (normalized) of the issue’s information
page selected as most relevant by participants from Treatment and Con-
trol groups. 1-Title,2-Label,3-Body,4-Code,5-Comments,6-Author,7-Linked
issues,8-Participants.

• Issue type (already existing in the project): This included
information about the type of the task: Bug, Enhance-
ment, Feature, Good First Issue, and GSoC.

• Code component (already existing in the project): This
included information about the specific Code components
of JabRef: Entry, Groups, External.Files, Main Table,
Fetcher, Entry.Editor, Preferences, Import, Keywords

• API-domain (new labels): the labels that were generated
by our classifier (IO, UI, Network, Security, etc.). These
labels were available only to the Treatment group.

TABLE VI
LABEL DISTRIBUTIONS AMONG THE CONTROL AND TREATMENT GROUPS

Type of Label Control C % Treatment T %
Issue Type 145 56.4 168 36.8
Components 112 43.6 94 20.6
API Domain - - 195 42.7

Table VI compares the labels that participants considered
relevant (section III-C-3) across the Treatment and Control
groups, distributed across these label types. In the Control
group, a majority of selected labels (56.4%) relate to the
type of issue (e.g., Bug or Enhancement). In the Experimental
group, however, this number drops down to 36.8%, with API-
domain labels being the majority (42.7%), followed by Code
component labels (20.6%). This difference in distributions
alludes to the usefulness of the API-domain labels.

To better understand the usefulness of the API-domain
labels as compared to the other types of labels, we further
investigated the label choices among the Experimental group
participants. Figure 7 presents two violin plots comparing (a)
API-domain labels against Code component labels and (b)
and type of issue. Wider sections of the violin plot represent
a higher probability of observations taking a given value,
the thinner sections correspond to a lower probability. The
plots show that API-domain labels are more frequently chosen
(median of 5 labels) as compared to Code component labels
(median of 2 labels), with a large effect size (|d| = 0.52).
However, the distribution of the Issue Type and API-domain

labels are similar as confirmed by a negligible effect size
(|d| = 0.1). These results indicate that the type of issue
(bug fix, enhancement, suitable for newcomer) is important,
as it allows developers to understand the type of task to
which they would be contributing. Understanding the technical
(API) requirements of solving the task is equally important in
developers making their decision about which task to select.

-2
0

2
4

6
8

10

API x Comp

API
Comp

-2
0

2
4

6
8

10

API x Type

API
Type

Fig. 7. Density Probability Labels (Y-Axis): API-domain x Components x
Types.

Finally, we analyzed whether the demographic subgroups
had different perceptions about the API-domain labels (Ta-
ble VII). When comparing Industry vs. Students, we found
participants from industry selected 1.9x (p-value=0.001) more
API-domain labels than students when we control by compo-
nent labels. We found the same odds when we control by issue
type (p-value=0.0007). When we compared Experienced vs.
Novice coders, we did not find statistical significance (p=0.11)
when controlling by components labels. However, we found
that experienced coders selected 1.7x more API-domain labels
than novice coders (p-value=0.01) when we control by type
labels.

The odds ratio analysis suggests that API-domain labels
are more likely to be perceived relevant got practitioners and
experienced developers than by students and novice coders.

TABLE VII
ANSWERS FROM DIFFERENT DEMOGRAPHIC SUBGROUPS REGARDING THE

API LABELS (API/COMPONENT/ISSUE TYPE)

Subgroup Comparison API % Comp or Type %
Industry API/Comp 56.0 44.0
Students API/Comp 40.0 60.0

Exp. Coders API/Comp 50.9 49.1
Novice Coders API/Comp 41.5 58.5

Industry API/issue Type 45.5 55.5
Students API/issue Type 30.6 69.4

Exp. Coders API/issue Type 43.5 56.5
Novice Coders API/issue Type 30.9 69.1

RQ2 Summary. Our findings suggest that labels are rel-
evant for selecting an issue to work on. API-domain
labels increased the perception of the labels’ relevancy.
API-domain labels are specially relevant for industry and
experienced coders.

V. DISCUSSION

Are API-domain labels relevant? Our results show that labels
become more relevant for selecting issues when we introduce
API-domain labels. From a new contributor’s point of view,
these labels are preferred over the current Code component
labels. The fact that these labels are more generic than Code
components, usually not exposing details about the technology,
may explain the results. Future interviews can help investigate
this topic.

API-domain labels were shown to be more relevant for ex-
perienced coders. Additional research is necessary to provide
effective ways to help novice contributors in onboarding. One
could investigate, for example, labels that are less related to
the technology and inform about difficult levels, priorities,
estimated time to complete, contact for help, required/recom-
mended academic courses, etc.

Finding an appropriate issue involves multiple aspects, one
of which is knowing the APIs required, which our labels
are about. Our findings show that participants consider API-
domain labels relevant in selecting issues. Future work can
investigate if these labels lead to better decisions in terms of
finding appropriate issues that match the developers’ skills.
Does the size of the corpus matter? Observing the results
reported for different corpora used as input, we noticed that
the baseline model created using only the issue body had
similar performance to the models using issue title, body, and
comments or better performance than the model using only
title. By inspecting the results, we noticed that by adding more
words to create the model, the matrix of features becomes
sparse and does not improve the classifier performance.
Domain imbalance and co-occurrence play a role. We
also found co-occurrence among labels. For instance, ”UI”,
”Logging”, and ”IO” appeared together more often than the
other labels. This is due to the strong relationship found in
the source files. By searching the references for these API-
domain categories in the source code, we found that ”UI”
was in 366 source code files, while ”IO” and ”Logging” was

in 377 and 200, respectively. We also found that ”UI” and
”IO” co-occurred in 85 source files, while ”UI” and ”Logging”
and ”IO” and ”Logging” co-occurred in 74 and 127 files,
respectively. On the other hand, the API-domain labels for
”Latex” and ”Open Office Document” appeared only in five
java files, while ”Security” appears in only six files. Future
research can investigate co-occurrence prediction techniques
(e.g., [56]) in this context.

We suspect that the high occurrence of ‘UI”, “Logging”, and
“IO” labels (> 400 issues) compared with the smallest occur-
rence of “Security”, “Open Office Documents”, “Database”,
“PDF”, and “Latex” (< 32 issues) may influence the precision
and F-measure values. We tested the classifier with only the
top 5 most prevalent API-domain labels and did not observe
statistically significant differences. One possible explanation
is that the transformation method used to create the classifier
was Binary Relevance, which creates a single classifier for
each label, overlooking possible co-occurrence of labels.
The more specific the API-domain is, the harder it is
to label. Despite the lack of accuracy to predict the rare
labels, we were able to predict those with more than 50
occurrences with reasonable precision. We argue that JabRef’s
nature contributes to the number of issues related to the ”UI”
and ”IO.” ”Logging” occurs in all files and therefore explains
its high occurrence. On the other hand, some specific API
domains that are supposedly highly relevant to JabRef—such
as “Latex”, “PDF”, and “Open Office Documents”—are not
well represented in the predictions.
How could we label issues with API domains that are rare
in our dataset? Looking to the Table VIII and comparing it
with the aforementioned co-occurrence data, we can determine
some expectations and induce some predictions. For example,
the ”database” label occurred with more frequency when we
had ”UI” and ”IO”. So, it is possible to guess when an issue
has both labels, and we likely can suggest a ”database ”label,
even when the machine learning algorithm could not predict
it. The same can happen with the ”Latex” label, which co-
occurred with ”IO” and ”Network”. A possible future work can
combine the machine learning algorithm proposed in this work
with frequent itemset mining techniques, such as apriori [57].
Thus, we can find an association rule between the previously
classified labels.

TABLE VIII
OVERALL METRICS FROM THE SELECTED MODEL

API-Domain TN FP FN TP Precision Recall
Google Commons 107 15 27 30 66.6% 52.6%

Test 112 18 29 20 52.6% 40.8%
OS 152 8 8 11 57.8% 57.8%
IO 9 30 3 137 82.0% 97.8%
UI 30 26 10 113 81.2% 91.8%

Network 107 10 30 32 76.1% 51.6%
Security 167 6 2 4 40.0% 66.6%

OpenOffice 165 6 3 5 45.4% 62.5%
Database 154 3 6 16 84.2% 72.7%

PDF 164 5 4 6 54.5% 60.0%
Logging 19 32 18 110 77.4% 85.9%

Latex 170 1 1 7 87.5% 87.5%

What information is relevant when selecting an issue to
contribute to? Participants often selected TITLE, BODY, and
LABELS to look for information when deciding to which issue
to contribute to. This result is in line with what we observed
in the design of the machine learning algorithm.
Practical implications This research has implications for
different stakeholders.
New contributors. API-domain labels can help open source
contributors, enabling them to review the skills needed to
work on the issues up front. This is specially useful for new
contributors and casual contributors [58, 59], who has no
previous experience with the project terminology.
Project maintainers. Automatic API-domain labeling can
help maintainers distribute team effort to address project
tasks based on required expertise. Project maintainers can
also identify which type of APIs generate more issues in
the project. Our results show that we can predict the most
prominent API domains—in this case, ”UI”, ”Logging”, ”IO”,
”Network”, and ”Test” with precision and recall up to 87.5%
and 97.8%, respectively (see Table VIII).
Platform/Forge Managers. Our results can be used to propose
better layouts for the issue list and detail pages, prioritizing
them against other information regions (3). In the issue detail
page on GitHub, for instance, the label information appears
outside of the main contributor focus, on the right side of
the screen. Moreover, as some wrong predictions in our study
might be possibly caused by titles and body with little useful
information to the corpus, templates can guide GitHub users
in filling out the issues’ body to create patterns that help
classifiers use the information to predict API labels.
Researchers. The scientific community can extend the pro-
posed approach to other languages and projects, including
more data and different algorithms. Our approach can also
be used to improve tools that recommend tasks that match
new contributor’s skills and career goals (e.g., [60]).
Educators. Educators who assign contributions to OSS as part
of their coursework [61] can also benefit from our approach.
Labeling issues on OSS projects can help them select examples
or tasks for their classes, bringing a practical perspective to
the learning environment.

VI. THREATS TO VALIDITY

One of the threats to the validity of this study is the
API domain categorization. We acknowledge the threat that
different individuals can create different categorizations, which
may introduce some bias in our results. To mitigate this
problem, three individuals, including a Java Developer expert
and a contributor to the JabRef project, created the API-
domain labels. In the future, we can improve this classification
process with (semi-)automated or collaborative approaches
(e.g., [62, 63]).

Another concern is the number of issues in our dataset and
the link between issues and pull requests. To include an issue
in the dataset, we needed to link it to its solution submitted via
pull request. By linking the issue with its correspondent pull

request, we could identify the APIs used to create the labels
and define our ground truth (check Section III-A). To ensure
that the link was correctly identified, we selected a random
sample of 50 issues and manually checked for consistency.
All of the issues in this validation set were correctly linked to
their pull requests.

In prediction models, overfitting occurs when a prediction
model has random error or noise instead of an underlying
relationship. During the model training phase, the algorithm
used information not included in the test set. To mitigate this
problem, we also used a shuffle method to randomize the
training and test samples.

Although participants with different profiles participated
in the experiment, the sample cannot represent the entire
population and results can be biased. The experiment link
randomly assigned a group to each participant. However, some
participants did not finish the survey and the groups ended up
not being balanced. Also, the way we created subgroups can
introduce bias in the analysis. The practitioners’ classification
as industry and students were done based on the location of
the recruitment and some students could also be industry prac-
titioners and vice-versa. However, the results of this analysis
were corroborated by the aggregation by experience level.

Further, we acknowledge that we did not investigate if the
labels helped the users to find the most appropriate tasks. It
was not part of the user study to evaluate how effective the API
labels were to find a match with user skills. This would only be
possible if we had the users to work on the issues, which was
not part of the experiment. Besides, we did not evaluate how
False Positive labels would impact task selection or ranking.
Our focus was on understanding the relevance that the API-
domain labels have on the participants’ decision. However, we
believe the impact is minimal since in the three most selected
issues, out of 11 recommendations only 1 label was a a false
positive. Investigating the effectiveness API labels for skill
matching and the problems that misclassification cause are
potential avenues for future work.

Generalization is also a limitation of any case study. The
outcomes could differ for other projects or programming lan-
guages ecosystems. We expect to extend this approach in that
direction in future work. Nevertheless, the case study in a real
world system showed how a multi-label classification approach
can be useful for predicting API-domain labels and how
relevant such a label can be to new contributors. Moreover,
the API-domain labels that we identified can generalize to
other projects that use the same APIs across multiple project
domains (Desktop and Web applications). JabRef adopts a
common architecture (MVC) and frameworks (JavaFX, JUnit,
etc.), which makes it similar to a large number of other
projects. As described by Qiu et al. [64], projects adopt
common APIs, accounting up to 53% of the APIs used.
Moreover, our data can be used as a training set for automated
API-domain label generation in other projects.

VII. CONCLUSION

In this paper, we investigate to what extent we can predict
API-domain labels. To do that, we mined data from 705
issues from the JabRef project and predicted 12 API-domain
labels over this dataset. The model that was created using the
Random Forest algorithm, unigrams, and data from the issue
body offered the best results. The labels most present in the
issues can be predicted with high precision.

To investigate whether API-domain labels are helpful to
contributors, we built an experiment to present a mocked
list of open issues with the API-domain labels mixed with
the original labels. We found that industry practitioners and
experienced coders selected API-domain labels more often
than students and novice coders. Participants also preferred
API-domain labels over Code component labels, which were
already used in the project.

This study is a step toward helping new contributors match
their API skills with each task and better identify an ap-
propriate task to start their onboarding process into an OSS
project. For future work, we will explore new projects, a word
embedding approach (Word2vec) with domain trained data to
vectorise the issues, and investigate a unified API label schema
capable of accurately mapping the skills needed to contribute
to OSS projects.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation under Grant numbers 1815486, 1815503, 1900903,
and 1901031, CNPq grant #313067/2020-1. We also thank the
developers who spent their time answering our survey.

REFERENCES

[1] J. Wang and A. Sarma, “Which bug should i fix: helping
new developers onboard a new project,” in Proceedings
of the 4th International Workshop on Cooperative and
Human Aspects of Software Engineering. ACM, 2011,
pp. 76–79.

[2] I. Steinmacher, T. U. Conte, and M. A. Gerosa, “Un-
derstanding and supporting the choice of an appropriate
task to start with in open source software communities,”
in 2015 48th Hawaii International Conference on System
Sciences. IEEE, 2015, pp. 5299–5308.

[3] I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F.
Redmiles, “A systematic literature review on the barriers
faced by newcomers to open source software projects,”
Information and Software Technology, vol. 59, pp. 67–85,
2015.

[4] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Red-
miles, “Social barriers faced by newcomers placing their
first contribution in open source software projects,” in
Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing, ser.
CSCW ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 1379–1392.

[5] C. Stanik, L. Montgomery, D. Martens, D. Fucci, and
W. Maalej, “A simple nlp-based approach to support

onboarding and retention in open source communities,”
in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2018, pp.
172–182.

[6] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just,
A. Schroter, and C. Weiss, “What makes a good bug
report?” IEEE Transactions on Software Engineering,
vol. 36, no. 5, pp. 618–643, 2010.

[7] N. Bettenburg, S. Just, A. Schröter, C. Weiß, R. Prem-
raj, and T. Zimmermann, “Quality of bug reports in
eclipse,” in Proceedings of the 2007 OOPSLA Workshop
on Eclipse Technology eXchange, ser. eclipse ’07. New
York, NY, USA: ACM, 2007, pp. 21–25.

[8] L. Vaz, I. Steinmacher, and S. Marczak, “An empirical
study on task documentation in software crowdsourcing
on topcoder,” in 2019 ACM/IEEE 14th International
Conference on Global Software Engineering (ICGSE).
IEEE, 2019, pp. 48–57.

[9] I. Steinmacher, C. Treude, and M. A. Gerosa, “Let me in:
Guidelines for the successful onboarding of newcomers
to open source projects,” IEEE Software, vol. 36, no. 4,
pp. 41–49, 2018.

[10] A. Barcomb, K. Stol, B. Fitzgerald, and D. Riehle,
“Managing episodic volunteers in free/libre/open source
software communities,” IEEE Transactions on Software
Engineering, pp. 1–1, 2020.

[11] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recom-
mendation in software information sites,” in 2013 10th
Working Conference on Mining Software Repositories
(MSR). IEEE, 2013, pp. 287–296.

[12] Y. Feng, J. Jones, Z. Chen, and C. Fang, “An empirical
study on software failure classification with multi-label
and problem-transformation techniques,” in 2018 IEEE
11th International Conference on Software Testing, Ver-
ification and Validation (ICST). IEEE, 2018, pp. 320–
330.

[13] T. Guggulothu and S. A. Moiz, “Code smell detection us-
ing multi-label classification approach,” Software Quality
Journal, vol. 28, no. 3, pp. 1063–1086, 2020.

[14] F. El Zanaty, C. Rezk, S. Lijbrink, W. van Bergen,
M. Côté, and S. McIntosh, “Automatic recovery of miss-
ing issue type labels,” IEEE Software, 2020.

[15] Y. Park and C. Jensen, “Beyond pretty pictures: Exam-
ining the benefits of code visualization for open source
newcomers,” in Proceedings of the 5th IEEE Interna-
tional Workshop on Visualizing Software for Understand-
ing and Analysis, ser. VISSOFT ’09. IEEE, Sep. 2009,
pp. 3–10.

[16] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement? a text-based
approach to classify change requests,” in Proceedings of
the 2008 conference of the center for advanced studies
on collaborative research: meeting of minds, 2008, pp.
304–318.

[17] N. Pingclasai, H. Hata, and K.-i. Matsumoto, “Clas-
sifying bug reports to bugs and other requests using

topic modeling,” in 2013 20Th asia-pacific software
engineering conference (APSEC), vol. 2. IEEE, 2013,
pp. 13–18.

[18] Y. Zhou, Y. Tong, R. Gu, and H. Gall, “Combining text
mining and data mining for bug report classification,”
Journal of Software: Evolution and Process, vol. 28,
no. 3, pp. 150–176, 2016.

[19] R. Kallis, A. Di Sorbo, G. Canfora, and S. Panichella,
“Ticket tagger: Machine learning driven issue classi-
fication,” in 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE,
2019, pp. 406–409.

[20] G. Uddin and F. Khomh, “Automatic mining of opinions
expressed about apis in stack overflow,” IEEE Transac-
tions on Software Engineering, pp. 1–1, 2019.

[21] D. Hou and L. Mo, “Content categorization of API
discussions,” in 2013 IEEE International Conference on
Software Maintenance, 2013, pp. 60–69.

[22] G. Petrosyan, M. P. Robillard, and R. De Mori, “Discov-
ering information explaining API types using text clas-
sification,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1, 2015, pp.
869–879.

[23] C. Treude and M. P. Robillard, “Augmenting API doc-
umentation with insights from stack overflow,” in 2016
IEEE/ACM 38th International Conference on Software
Engineering (ICSE), 2016, pp. 392–403.

[24] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and
H. Gall, “Analyzing apis documentation and code to
detect directive defects,” in 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering (ICSE),
2017, pp. 27–37.

[25] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang,
“Api method recommendation without worrying about
the task-api knowledge gap,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated
Software Engineering, ser. ASE 2018. New York, NY,
USA: Association for Computing Machinery, 2018, p.
293–304.

[26] H. Zhong and H. Mei, “An empirical study on API
usages,” IEEE Transactions on Software Engineering,
vol. 45, no. 4, pp. 319–334, 2019.

[27] Y. Zhou, C. Wang, X. Yan, T. Chen, S. Panichella, and
H. C. Gall, “Automatic detection and repair recommen-
dation of directive defects in Java API documentation,”
IEEE Transactions on Software Engineering, pp. 1–1,
2018.

[28] S. Wang, N. Phan, Y. Wang, and Y. Zhao, “Extracting
API tips from developer question and answer websites,”
in 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), 2019, pp. 321–332.

[29] T. Dey, A. Karnauch, and A. Mockus, “Representation
of developer expertise in open source software,” arXiv
preprint arXiv:2005.10176, 2020.

[30] R. K. Yin, Case Study Research: Design and Methods,
ser. Applied social research methods series. Beverly

Hills, CA: Sage Publications, 1984.
[31] JabRef, “JabRef project,” 2019. [Online]. Available:

https://jabref.org/
[32] T. Olsson, M. Ericsson, and A. Wingkvist, “The rela-

tionship of code churn and architectural violations in
the open source software jabref,” in Proceedings of the
11th European Conference on Software Architecture:
Companion Proceedings, 2017, pp. 152–158.

[33] A. Mayr, R. Plösch, and C. Körner, “A benchmarking-
based model for technical debt calculation,” in 2014 14th
International Conference on Quality Software. IEEE,
2014, pp. 305–314.

[34] S. Herold, “An initial study on the association between
architectural smells and degradation,” in European Con-
ference on Software Architecture. Springer, 2020, pp.
193–201.

[35] Z. Shi, J. Keung, and Q. Song, “An empirical study of
bm25 and bm25f based feature location techniques,” in
Proceedings of the International Workshop on Innova-
tive Software Development Methodologies and Practices,
2014, pp. 106–114.

[36] S. Feyer, S. Siebert, B. Gipp, A. Aizawa, and J. Beel,
“Integration of the scientific recommender system mr.
dlib into the reference manager jabref,” in European
Conference on Information Retrieval. Springer, 2017,
pp. 770–774.

[37] J. Ramos et al., “Using tf-idf to determine word rele-
vance in document queries,” in Proceedings of the first
instructional conference on machine learning, vol. 242.
Piscataway, NJ, 2003, pp. 133–142.

[38] D. Behl, S. Handa, and A. Arora, “A bug mining tool
to identify and analyze security bugs using naive bayes
and tf-idf,” in 2014 International Conference on Reliabil-
ity Optimization and Information Technology (ICROIT).
IEEE, 2014, pp. 294–299.

[39] S. L. Vadlamani and O. Baysal, “Studying software
developer expertise and contributions in Stack Overflow
and GitHub,” in 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE,
2020, pp. 312–323.

[40] F. Herrera, F. Charte, A. J. Rivera, and M. J. del Jesus,
Multilabel Classification: Problem Analysis, Metrics and
Techniques, 1st ed. Springer Publishing Company,
Incorporated, 2016.

[41] F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera,
“Mlsmote: approaching imbalanced multilabel learning
through synthetic instance generation,” Knowledge-Based
Systems, vol. 89, pp. 385–397, 2015.

[42] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning
approach to multi-label learning,” Pattern recognition,
vol. 40, no. 7, pp. 2038–2048, 2007.

[43] D. Chicco and G. Jurman, “The advantages of the
matthews correlation coefficient (mcc) over f1 score
and accuracy in binary classification evaluation,” BMC
genomics, vol. 21, no. 1, p. 6, 2020.

[44] J. Romano, J. Kromrey, J. Coraggio, and J. Skowronek,

https://jabref.org/

“Appropriate statistics for ordinal level data: Should
we really be using t-test and Cohen’sd for evaluating
group differences on the NSSE and other surveys?” in
annual meeting of the Florida Association of Institutional
Research, 2006, pp. 1–3.

[45] A. Blanco, A. Casillas, A. Pérez, and A. D. de Ilarraza,
“Multi-label clinical document classification: Impact of
label-density,” Expert Systems with Applications, vol.
138, p. 112835, 2019.

[46] M. Szumilas, “Explaining odds ratios,” Journal of the
Canadian academy of child and adolescent psychiatry,
vol. 19, no. 3, p. 227, 2010.

[47] D. Sheskin, Handbook of Parametric and Nonparametric
Statistical Procedures, 5th ed. Chapman & Hall, 2020.

[48] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto, “The impact of automated parameter
optimization on defect prediction models,” IEEE Trans-
actions on Software Engineering, vol. 45, no. 7, pp. 683–
711, 2019.

[49] D. Petkovic, M. Sosnick-Pérez, K. Okada, R. Todten-
hoefer, S. Huang, N. Miglani, and A. Vigil, “Using the
random forest classifier to assess and predict student
learning of software engineering teamwork,” in 2016
IEEE Frontiers in Education Conference (FIE). IEEE,
2016, pp. 1–7.

[50] E. Goel, E. Abhilasha, E. Goel, and E. Abhilasha,
“Random forest: A review,” International Journal of
Advanced Research in Computer Science and Software
Engineering, vol. 7, no. 1, 2017.

[51] T. Pushphavathi, V. Suma, and V. Ramaswamy, “A novel
method for software defect prediction: hybrid of fcm
and random forest,” in 2014 International Conference
on Electronics and Communication Systems (ICECS).
IEEE, 2014, pp. 1–5.

[52] S. M. Satapathy, B. P. Acharya, and S. K. Rath, “Early
stage software effort estimation using random forest tech-
nique based on use case points,” IET Software, vol. 10,
no. 1, pp. 10–17, 2016.

[53] T. Saito and M. Rehmsmeier, “The precision-recall plot
is more informative than the roc plot when evaluating
binary classifiers on imbalanced datasets,” PloS one,
vol. 10, no. 3, p. e0118432, 2015.

[57] R. Agrawal, T. Imieliundefinedski, and A. Swami, “Min-
ing association rules between sets of items in large
databases,” SIGMOD Rec., vol. 22, no. 2, p. 207–216,
Jun. 1993.

[54] P. A. Flach and M. Kull, “Precision-recall-gain curves:
Pr analysis done right.” in NIPS, vol. 15, 2015.

[55] “scikit-learn dummy classifier,” https://scikit-learn.
org/stable/modules/generated/sklearn.dummy.
DummyClassifier.html?highlight=dummy#sklearn.
dummy.DummyClassifier, accessed: 2021-03-12.

[56] I. S. Wiese, R. Ré, I. Steinmacher, R. T. Kuroda, G. A.
Oliva, C. Treude, and M. A. Gerosa, “Using contextual
information to predict co-changes,” Journal of Systems
and Software, vol. 128, pp. 220–235, 2017.

[58] G. Pinto, I. Steinmacher, and M. A. Gerosa, “More
common than you think: An in-depth study of casual
contributors,” in IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering, SANER
2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume
1, 2016, pp. 112–123.

[59] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and
M. A. Gerosa, “Newcomers’ barriers. . . is that all? an
analysis of mentors’ and newcomers’ barriers in OSS
projects,” Comput. Supported Coop. Work, vol. 27, no.
3–6, p. 679–714, Dec. 2018.

[60] A. Sarma, M. A. Gerosa, I. Steinmacher, and R. Leano,
“Training the future workforce through task curation in
an OSS ecosystem,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016, pp. 932–935.

[61] G. H. L. Pinto, F. Figueira Filho, I. Steinmacher, and
M. A. Gerosa, “Training software engineers using open-
source software: the professors’ perspective,” in 2017
IEEE 30th Conference on Software Engineering Educa-
tion and Training (CSEE&T). IEEE, 2017, pp. 117–121.

[62] M. Ferreira Moreno, W. H. Sousa Dos Santos, R. Costa
Mesquita Santos, and R. Fontoura De Gusmao Cerqueira,
“Supporting knowledge creation through has: The hyper-
knowledge annotation system,” in 2018 IEEE Interna-
tional Symposium on Multimedia (ISM), 2018, pp. 239–
246.

[63] Y. Lu, G. Li, Z. Zhao, L. Wen, and Z. Jin, “Learning
to infer API mappings from API documents,” in Inter-
national Conference on Knowledge Science, Engineering
and Management. Springer, 2017, pp. 237–248.

[64] D. Qiu, B. Li, and H. Leung, “Understanding the API
usage in Java,” Information and software technology,
vol. 73, pp. 81–100, 2016.

https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html?highlight=dummy#sklearn.dummy.DummyClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html?highlight=dummy#sklearn.dummy.DummyClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html?highlight=dummy#sklearn.dummy.DummyClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html?highlight=dummy#sklearn.dummy.DummyClassifier

	I Introduction
	II Related Work
	III Method
	III-A Phase 1 - Mining JabRef Repository
	III-B Phase 2 - Building the Multi-label Classifiers
	III-C Phase 3 - Evaluating the API-Domain Labels with Developers

	IV Results
	IV-A RQ1. To what extent can we predict the domain of APIs used in the code that fixes a software issue?
	IV-B RQ2. How relevant are the API-domain labels to new contributors?

	V Discussion
	VI Threats to Validity
	VII Conclusion

