Planning for Untangling: Predicting the Difficulty of Merge
Conflicts

Caius Brindescu
Oregon State University
Corvallis, OR, USA
brindesc@oregonstate.edu

Rafael Leano
Oregon State University
Corvallis, OR, USA
leanor@oregonstate.edu

ABSTRACT

Merge conflicts are inevitable in collaborative software develop-
ment and are disruptive. When they occur, developers have to stop
their current work, understand the conflict and the surrounding
code, and plan an appropriate resolution. However, not all conflicts
are equally problematic—some can be easily fixed, while others
might be complicated enough to need multiple people. Currently,
there is not much support to help developers plan their conflict
resolution. In this work, we aim to predict the difficulty of a merge
conflict so as to help developers plan their conflict resolution. The
ability to predict the difficulty of a merge conflict and to identify the
underlying factors for its difficulty can help tool builders improve
their conflict detection tools to prioritize and warn developers of
difficult conflicts. In this work, we investigate the characteristics
of difficult merge conflicts, and automatically classify them. We
analyzed 6,380 conflicts across 128 java projects and found that
merge conflict difficulty can be accurately predicted (AUC of 0.76)
through machine learning algorithms, such as bagging.

CCS CONCEPTS

« Software and its engineering — Software reliability; Software
maintenance tools; Software design tradeoffs.

KEYWORDS

Merge conflict difficulty prediction, Merge conflict resolution, Em-
pirical analysis

ACM Reference Format:

Caius Brindescu, Iftekhar Ahmed, Rafael Leano, and Anita Sarma. 2020.
Planning for Untangling: Predicting the Difficulty of Merge Conflicts. In
Proceedings of ACM conference (ICSE’2020). ACM, New York, NY, USA, Arti-
cle 4, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE 2020, May 2020, Seoul, South Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Iftekhar Ahmed
University of California, Irvine
Irvine, CA, USA
iftekha@uci.edu

Anita Sarma
Oregon State University
Corvallis, OR, USA
anita.sarma@oregonstate.edu

1 INTRODUCTION

Version Control Systems (VCS) have made large teams possible,
enabling thousands of developers to contribute together in building
Open Source Software (OSS), and proprietary software and tech-
nologies. However, despite the introduction of new, sophisticated,
distributed version control systems, the basic protocol of using VCS
still remains the same: code in private workspaces and synchronize
periodically.

One challenge with this coordination protocol is merge conflicts.
Merge conflicts occur when developers modify the same lines of
code simultaneously. Research shows that merge conflicts are preva-
lent: about 19% of all merges end up in a merge conflict [2, 15, 37].

Merge conflicts have an impact on the code quality [2, 22, 50] and
are disruptive to the development workflow. To resolve a merge
conflict, a developer has to stop what they are doing and focus on
the resolution. Resolving a conflict requires the developer to un-
derstand the conflicting changes and craft a solution that satisfies
both sets of requirements driving the change. This disruption to
the workflow can be compounded if conflict resolution requires
additional expertise [21, 22, 50]. These factors can prompt devel-
opers to postpone the conflict resolution, or “kick the can” further
down the road. In fact, a study by Nelson et al. [49] found that
56.18% of developers have deferred at least once when responding
to a merge conflict. However, the later a conflict is resolved, the
harder it is to recall the rationale of the changes. which makes the
resolution process that much more difficult [7, 27]. As aptly put by
a participant from the study by Nelson et al. [49]:

“Deferring a merge conflict simply kicks the can down
the road (or off a cliff). Typically resolving the conflict
only gets more difficult as time passes.”

However, sooner or later the conflict has to be resolved. To do so
developers follow a process with four distinct resolution phases [49],
as illustrated in Figure 1. Developers alternate between clean and
conflicting states of code. Beginning from (1) the development stage,
developers create an (2) awareness of conflicts within the codebase
either passively when they face a conflict during a merge or by
proactively monitoring ongoing changes. Once aware, developers
begin (3) planning for a (4) resolution to fix the conflict. And fi-
nally, developers (5) evaluate the effectiveness of their deployed
resolutions (returning to planning if the resolution fails).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE’2020, May 2020, Seoul, South Korea

Clean Conflicting

2 3
Awareness Planning

Figure 1: Model of Developer Processes for Managing Merge
Conflicts, from Nelson et al. [49]

Several research works exist to support parts of the conflict reso-
lution process. For the Development and Awareness phase, devel-
opers can benefit from workspace awareness tools [11, 15, 31, 53].
When working on the Resolution phase, developers can utilize
different semi-automated merge techniques, such as unstructured
merge [8, 12, 18, 47, 48], structured merge [16, 55, 60], semantics-
based merge [10, 34], and hybrid merge [4, 5, 39]. The Evaluation
phase has support through existing VCS (e.g., Git, SVN, TES, CVS)
and Continuous Integration systems (e.g., Jenkins, Travis CI, Team-
City).

None of these works, however, support the Planning phase of
merge conflict resolution. We aim to close this gap and help devel-
opers plan their conflict resolution by predicting the difficulty of a
merge conflict.

Our work can facilitate planning of conflict resolution in several
ways. It can help developers plan: (1) when to resolve the conflict; if
the conflict is simple they can resolve it instantaneously, otherwise
they may need to allocate a longer resolution time period, (2) who to
resolve it with; if a conflict is difficult they may need to coordinate
a collaborative merge, (3) how much to review or test the merged
code; if a conflict is difficult it may behoove the developers to more
rigorously review and test the merged changes.

In this work, through a large scale empirical investigation we
analyze what makes a merge conflict difficult, and whether we can
predict the severity of a conflict from its underlying changes. More
formally, we aim to answer the following research questions:

RQ1: How well can we predict the difficulty of merge conflicts?
RQ2: What makes a merge conflict difficult?
RQ3: How portable is our conflict difficulty prediction model?

To answer these research questions, we mine the characteristics
of 6,380 merge conflicts from 128 Java projects in GitHub. To enable
a prediction of merge conflict resolution, we gather a total of 16
process- and code-related metrics, such as the conflicting lines of
code, differences in abstract syntax trees (AST), cyclomatic com-
plexity (CC) etc. We use metrics that are available as the conflict
develops (i.e., before the developer merges their changes), therefore,
enabling developers lead time for their planning.

Our results show that we can predict the difficulty of merge
conflicts accurately (an AUC of 0.76). Knowing which conflicts are
difficult can help developers plan their conflict resolution. Our work
also serves as a baseline prediction model for further research.

Caius Brindescu, Iftekhar Ahmed, Rafael Leano, and Anita Sarma

2 RELATED WORK

Merge conflicts are a common side effect of concurrent develop-
ment [65]. While the use of version control systems flags divergent
changes and prevents one change from overwriting another, they
cannot always automatically resolve conflicts. Researchers have
tried different approaches to help developers deal with conflicts: (1)
early detection of conflicts, (2) merging assistance, and (3) preven-
tion of conflicts.

2.1 Early detection

Conflicts tend to grow over time. Therefore, early detection helps
limit the files and the size of the changes involved in a conflict.
Workspace awareness tools monitor ongoing work to detect emerg-
ing conflicts. The goal of these tools is to “catch” the conflicts early
so that it is easier to resolve them. Biehl et al. [11] propose FastDash,
which identifies developers modifying the same file and notifies
them about potential merge conflicts as they emerge. Hattori and
Lanza [33] propose Syde, a tool that analyzes changes made to the
source code at the level of AST operations. Syde detects conflicts
by comparing the (AST) tree operations. Guimaraes and Silva [31]
introduce WeCode, which continuously merges changes in the
background to detect merge conflicts. Tools such as Palantir [53]
and Crystal [15] proactively detect both merge conflicts, as well as
semantic conflicts; the latter being conflicts that are revealed by
failed builds or tests. Servant et al. [54] propose CASI, a tool that
allows developers to visualize the code that their changes impact,
with the aim of detecting semantic conflicts.

While these tools notify developers of emerging conflicts, they
do not provide any assistance in resolving them. Our focus is on
predicting the difficulty of merge conflicts so that developers can
prioritize their resolution efforts.

2.2 Merging Assistance

Another major thread in merge conflict research is support for the
resolution of merge conflicts. Mens [46] provides a comprehensive
survey on the state of the art merging techniques. Apel et al. [4, 5]
propose a new merging approach; called semi-structured merg-
ing. This technique considers the syntactical structure of the code
that is to be merged. Lippe and van Oosterom [41] also propose a
new merging technique, operational merging, which considers the
changes that were done to the code, in addition to the end result.

While we do not attempt to provide resolution support to devel-
opers, our work may help developers choose one resolution strategy
over other based on the difficulty of the conflict.

2.3 Prevention

Finally, another way to deal with conflicts is to prevent them from
occurring in the first place. Kasi and Sarma [37] try to avoid merge
conflicts altogether by scheduling tasks in a way that minimize
the probability of conflict. Wloka et al. [61] introduce SafeCommit.
It uses a static analysis approach to identify changes that can be
committed safely, i.e. they do not cause any of the tests to fail.
This allows developers to cherry pick the commits that are safe
to commit (and avoid conflicts). Dewan and Hedge [24] propose a
new development process that allows developers to synchronously
collaborate on the conflicting code and solve the conflicts before

Planning for Untangling: Predicting the Difficulty of Merge Conflicts

finishing the task. Leenich et al. [40] conducted a survey of 41
developers and inferred 7 indicators to predict the number of merge
conflicts. Then they analyzed 163 open-source projects found that
none of these 7 indicators suggested by the participating developer
has a predictive power concerning the frequency of merge conflicts.

While some conflicts can be prevented, others are bound to oc-
cur. For example, Kasi and Sarma in their approach have to relax
some constraints to allow some conflicts to occur when the space
becomes too constrained. Leflenich et al. [39] and Cavalcanti et
al. [17] examined 50 and 60 projects, respectively, to compare semi-
structured and unstructured merge techniques in terms of how
many conflicts they report. Both studies found that semi-structured
merge techniques can reduce the number of conflicts by approxi-
mately half, but not eliminate them. Our work can be useful as a
guide for which constraints (or conflicts) can be relaxed.

2.4 Conflict difficulty

Different studies have investigated ways to measure the amount of
effort required to resolve a conflict. Resolution time varies signif-
icantly across projects and ranged not in hours, but in days [37];
and it can be used as a proxy to measure the difficulty of conflicts
(difficult conflicts take more time to solve). The Orion approach
by Prudencio et. al [51] tried to minimize the number of files to
be locked using the actions applied in the file, and the committed
actions. Their end goal was to minimize the number of conflicts
that would occur, at the cost of reduced development concurrency.
McKee et al. [44] and Nelson et al. [49] interviewed developers and
then performed a follow-up survey with 162 developers to build a
detailed understanding of developer perceptions regarding merge
conflicts. They found, among other things, that complexity of the
conflicting lines of code and file as a whole, number of LOC in-
volved in the conflict, and developers’ familiarity with the lines of
code in conflict all impact how difficult developers find a conflict
to resolve. Menezes et al. [45] used number of conflicting chunks
to determine patterns that occur in merge conflicts.

Allin all, none of these related works deals with the main purpose
of the our work: the prediction of difficulty of potential merge
conflicts in order to help developers prioritize merge conflicts to
inspect, accomplish more things given tight schedule, and not waste
reviewing effort on trivial merge conflict resolutions.

3 METHODOLOGY

To predict the difficulty of conflict resolutions, we collect a repre-
sentative corpus of merge conflicts to be examined by four different
machine learning classifiers. We use the following process during
our study: (A) we collect a sample of Java projects hosted on GitHub;
(B) we filter projects that do contain merge conflicts, are inactive, or
toy projects; (C) we extract the relevant attributes needed for merge
conflict analysis by conducting a literature survey; (D) we label
a subset of merge conflicts manually; (E) we conduct supervised
training with four machine learning classifiers; (F) we compare the
results from each of the classifiers; (G) we perform feature selection;
and, (H) we repeat steps (E) and (F) for cross-project merge conflict
difficulty prediction. We describe each of these steps in further
detail in the following subsections.

ICSE’2020, May 2020, Seoul, South Korea

3.1 Project Selection Criteria

We made our project selections to be applicable to the requirements
of the four machine learning classifiers and to be representative
of code developed in the real world. Therefore, we only select ac-
tive, open source projects from GitHub. We opted to select projects
that use the same programming language to control for language-
specific differences in the Lines of Code (LOC) metrics, program
dependencies, and construct comparability. We use Java as our lan-
guage of choice for two reasons: (1) Java is one of the most popular
languages (according to the number of Java projects hosted on
Github [30] and the Tiobe index [1]); and, (2) there are more mature
analysis tools available for Java as compared to other programming
languages.

We began by selecting 900 Java projects returned by GitHub
search mechanism without any filtering criteria. From these 900
projects, we eliminate projects that were forked copies of other
projects to prevent skewed results, leaving 500 projects in the end.
Since some projects do not compile, either due to syntax, build
errors, or missing dependencies, we eliminated an additional 300
projects. After filtering, our corpus contained 200 Java projects we
were successfully able to compile and run.

We follow the guidelines presented by Kalliamvakou et al. [36]
for mining Git repositories. We removed projects that were too
small (fewer than 10 files, or fewer than 500 lines of code), and
those that were not active in the past 6 months. We also removed
projects that do not contain merge conflicts. These selection criteria
were required since there is a long tail of small and short lived
projects on GitHub; including trial projects, projects with a single
author, or projects with no parallel development history, which did
not have any merge commits. We focus on collaborative software
development for this work, and we therefore remove projects that
are not collaborative in nature. Our final corpus had 128 projects.
Table 1 provides a summary of project statistics for these projects,
including: number of lines, total number of commits, total number
of merges, total number of merge conflicts, number of developers,
and number of days that project has existed on GitHub as of March
1, 2018.

Table 1: Mined Projects Statistics

Dimension Max Min Average Std. dev.
Line count (LOC) 542,571 751 75,795.04 105,280.1
Total Commits 30,519 16 3,894.48 5,070.73
Total Merges 4,916 1 252.60 522.73
Total Conflicts 227 1 25.86 39.49
Developers 105 4 72.76 83.19
Duration (days) 6,386 42 1,674.54 1,112.11

We also manually categorized the domain of the projects by
looking at the project description and using the categories used by
Souza et al. [23]. Table 2 has the summary of the domains of the 128
projects and their percentage of representation within our corpus.

3.2 Conflict Identification

We queried the repository of the 128 projects, from which we ex-
tracted 556,911 commits. This included 36,122 merge commits. Since

ICSE’2020, May 2020, Seoul, South Korea

Table 2: Distribution of Projects by Domain

Domain Percentage
Development 61.98%
System Administration 12.66%
Communications 6.42%
Business & Enterprise 8.10%
Home & Education 3.11%
Security & Utilities 2.61%
Games 3.08%
Audio & Video 2.04%

Git only stores information of commits, but does not record in-
stances of merge conflicts we identified merge conflicts by follow-
ing branch merges and analyzing the commits involved as shown
in Figure 2. First, we identified merges as commits with two or
more parents, such as commit AB. Then we merged the parents of
that commit (A, and Bj) using the git merge command. If the
merge was unsuccessful then AB was marked as a merge conflict
(m). Using this approach, we identified 6,380 merge conflicts.

We consider a merge conflict to be an instance when running
git merge failed because of concurrent changes in the 2 (or more)
branches being merged. A conflict can have multiple conflicting
files, each with multiple conflicting chunks. For the purposes of
this research, we focused on conflicts that occurred in source code
files (. java).

OH—E@—O—@
o

git merge, &
v a4 'm -
git diff . . 4

@ e O @

Figure 2: Identifying conflicts in git, merge AB has two par-
ents Ap,B, that cannot be merged automatically.

3.3 Data Collection

Once we identified a merge conflict, we extracted additional infor-
mation relevant for the analysis of the conflict, such as: the authors
involved in the commits, the commit message, the files that were
edited, the changes that were made (by using the git diff com-
mand), and so on. This was done for the parent commits A, and
By, as well as all commits on either branch back to the base commit
(i.e. the last shared parent commit). That is, from all commits A; to
Ay and Bj to By, (in Figure 2).

Performance of any prediction is dependent on the features used.
Therefore, we wanted to use a comprehensive set of features. In
order to get an overview of the current state of the art research
on merge conflict difficulty and metrics used, we conducted a lit-
erature survey. We targeted all full conference and journal papers
related to merge conflict difficulty from 2008 to 2018 (inclusive)
that appeared in top Software Engineering venues: ICSE, FSE, ASE,
ICSM/ICSME, MSR, ESEM, TSE, TOSEM. Starting from the proceed-
ings, we searched for a set of keywords including “merge conflict
difficulty,” “merge conflict resolution effort” etc. We found only 4
papers [44, 45, 49, 51] and we analyzed what metrics were used in
the studies.

Caius Brindescu, Iftekhar Ahmed, Rafael Leano, and Anita Sarma

Based on the metrics reported in the identified papers and also
based on intuition, we obtained 16 factors for each conflict, which
we list in Table 3. We grouped these factors into five unique di-
mensions: size, complexity, diffusion, development pattern and
comment [62]. We gathered these factors from either the Git repos-
itory, or we derived them by analyzing the source code, when the
factors are related to the process and code metrics (characterized
in numerical form).

Since certain metrics are calculated at different levels of granular-
ity (e.g. complexity metrics are calculated at the method level), we
aggregate all factors to a per conflict measurement using the aver-
age. In Table 3, the subscript is the operation used for aggregation.
For example, for cyclomatic complexity CCsypm is the sum of the cy-
clomatic complexities of all the files modified in both branches. We
calculated file-based metrics using all modified files and conflicting
files. Size metrics use LOC as the unit of measurement.

We also include branch and author commits patterns. They refer
to the temporal order in which commits are ordered in separate
branches. The branch pattern reflects how commits are interleaved
between branches. For example, in Figure 3, commit A; in branch A
followed by commit B in branch B, which yields the pattern AB. We
continue building the pattern, until we reach the final ABAABBBA.
We then collapse identical letters, yielding the final pattern ABABA.
We collapse the letters, because we are interested in the interleaving,
and not the total number of commits. A longer pattern means that
the commits were more interleaved (tangled).

Similarly, author pattern shows how commits were interweaved
between different authors. In Figure 3 we have 3 authors: John (J),
Alice (A), and Oscar (O). Applying the same rules as the branch pat-
tern, we end up with JAOA]. Our rational for using these patterns
as features in our analysis is that, the more interleaved (tangled) a
development patterns is, the more difficult it should be to untangle
it when resolving the merge conflict.

1
B | I I I
| I | |
| I | | I
| | |
|
@ eee
| | | |
| | | I [
branch A B A A B B B A —> ABAABBBA (ABABA)
author 3 A 0 1A 3 33 — JAQIAIL (JAOAI)

Figure 3: Example of calculating the branch and author pat-
terns for a merge commit. Time flows from left to right and
the arrows point to a commits parent(s).

3.4 Training Data Labeling

Before training the classifiers, we first manually labeled conflicts
as either severe or trivial based on their difficulty of resolution.
From the pool of 6,380 conflicts, we extracted and labeled a random
sampling of 600 conflicts (approximately 10% of all conflicts). This
random sample represents conflicts in 105 distinct projects out of
the total of 128.

In order to validate our evaluation, the first two authors inde-
pendently labeled 60 conflicts based on their difficulty. In order to

Planning for Untangling: Predicting the Difficulty of Merge Conflicts

Table 3: Collected Process and Product Metrics

ICSE’2020, May 2020, Seoul, South Korea

Category Metric Description Source
Number of authors Number of different authors involved in all commits A;..A,, and B;..Bj,. [49]
Size Number of edits The number of edits of each file [45, 49]
LOC Size in Lines of Code (LOC) of commit A (LOCy4), B (LOCp) [45, 49]
LOCq;ff LOC differences between commits A, and B, [49]
CCsum The total (sum) cyclomatic complexity of all files modified in both branches [44, 49]
Complexity CCrax The maximum cyclomatic complexity of all files modified in both branches [44, 49]
CCauyg The average cyclomatic complexity of all files modified in both branches [44, 49]
Dev. Pattern Patternp,gneh Length of commit pattern between branches [51]
Patterngy,ihor Length of author pattern between branches [51]
Filesjqva Total number of java files modified in branches A, B [45]
Files Total number of files modified in branches A, B [44, 49]
Diffusion Dependencysym Total dependencies (sum) of all files modified in both branches [44, 49]
b Dependencymax The maximum dependencies of all files modified in both branches [44, 49]
Dependencygug The average dependencies of all files modified in both branches [44, 49]
ASTyirf The number of differences of the AST trees between all modified files in both [45]
branches
Comment Comments All the comments from commits Aj...A,, and By...Bj. [45]

evaluate the difficulty, the authors recreated each conflict and at-
tempted the resolution. The authors used the time required to solve
the conflict as well as the cognitive load, in order to classify the
merge conflict as difficult or Severe or Trivial. In order to validate
the resolution, we compared our merge conflict resolution with the
one that was checked in the version control system. We considered
the developer’s merge conflict resolution as the oracle, as it is most
likely to be correct, given their in depth knowledge of the code. In
all cases, our resolution was functionally equivalent to the devel-
oper’s resolution. Listing 1 shows part of the author’s resolution
for a Severe merge conflict, which is functionally identical to the
developers’ resolution!.

We checked for agreement by using Cohen’s Kappa, and we
achieved an IRR of 0.8. The two authors then independently coded
the rest of the conflicts, in order to build the training set.

3.5 Feature Selection

To select the appropriate metrics we carry out an analysis of poten-
tial multicollinearity between the metrics. Previous research [6, 56]
demonstrated that many process and source code metrics are corre-
lated, both with each other, and with lines of code (LOC). Ignoring
such correlations would lead to increased errors in the estimates
of model performances, and increased standard errors of the pre-
dictions [32]. We checked for multicollinearity using the Variance
Inflation Factor (VIF) [19] of each predictor in our model for our
data set. VIF describes the correlation between predictors. A VIF
score between 1 and 5 indicates moderate correlation with other
factors, and these selected the predictors are with VIF < 5. This
step was necessary since the presence of highly correlated factors
forces the estimated regression coefficient of one variable to depend
on other predictor variables that are included in the model. Out of

Uhttps://github.com/neo4j/neo4j//commit/178be5

the 16 factors, 5 had VIF > 5, so we ended up using the remaining
11 factors for building the classifiers.

We further investigate the resulting eleven factors in their effec-
tiveness in predicting the difficulty of a merge conflict, and report
the results in Section 4. We find that prior work has also used a
subset of these factors as a proxy for difficulty of a conflict [37, 51],
which is encouraging for our own work.

3.6 Machine Learning

We trained and tested our sample using 4 different machine learn-
ing techniques: Support Vector Machines (SVM), Logistic Regres-
sion, Multi-Layer Perceptron (Perceptron), and Bayes Network
(BayesNet). For all techniques, we used a 10-fold cross-validation
on our sample of 600 labeled conflicts. We used a wide range of
learning techniques to reduce the risk of dependence on a particular
algorithm or implementation.

3.6.1 BayesNet. We use the Bayes Network algorithm as we ex-
pected features to not be independent and Bayesian Network does
not have assumptions regarding independence. For example, LOCy; ¢ f
and files (number of files) share a relation, as editing more files will
also increase the LOC edited. Also, Bayesian Networks can repre-
sent richer models compared to naive Bayes classifiers. We used the
SimpleEstimator to calculate the conditional probabilities used by
the Bayes algorithm. Finally, BayesNet uses a hill-climbing greedy
algorithm for evolving, combined with a K2 search algorithm to
create its network. We configured with a batch size of 100.

3.6.2 Binomial Logistic Regression. For the Binomial Logistic Re-
gression, we started with a full model using all 11 attributes from
conflicts. This was followed by a model selection using Akaike
Information Criterion (AIC), which estimates the information loss
between models in comparison to the original. It ultimately selects

https://github.com/neo4j/neo4j/commit/178be5393fcfaf860c72ba2b9f26acc05b621375#diff-af31f64d35f8926cc7c52a61578eb839R482

ICSE’2020, May 2020, Seoul, South Korea

Caius Brindescu, Iftekhar Ahmed, Rafael Leano, and Anita Sarma

476 Factory <byte[]> xidGloballdFactory = createXidGloballdFactory ();

// no conflicts in these lines

482 txManager = new ReadOnlyTxManager(xaDataSourceManager, xidGloballdFactory , logging.

getMessagesLog (ReadOnlyTxManager.class));

Listing 1: Authors’ resolution of a Severe merge conflict. In this example, the developers made two concurrent
refactorings to the ReadOnlyTxManager constructor, one of the refactorings introducing a new parameter.

the best model based on both the fit of the model and the informa-
tion lost. We then use the selected attributes to build the new, final
model, on which we evaluate.

3.6.3 Support Vector Machine (SYM). Based upon an assumption
that conflicts would be linearly separated across factors, we selected
SVM. Our SVM uses the standard Radial Bases Function (RBF) Kernel
and for the other parameters we performed a grid search to choose
the best classification found. This configuration result had a 1,000-
cache size, a 1,000 size, a gamma (y) of 0.0001, a C of 1,000 and one
maximum iterator.

3.6.4 Multi-Layer Perceptron. We used a Multi-Layer Perceptron to
see if it could leverage hidden relationships not explored in the other
algorithms. We configured our Perceptron with a 0.3 learning rate,
a 0.2 momentum, and 500 epochs. The Perceptron would terminate
its validation testing after not being able to reduce its error 20 times
in a row.

3.6.5 Bagging. We also used Auto-WEKA [38] for identifying the
best classifier, which automatically searches through the joint space
of WEKA’s learning algorithms and their respective hyperparame-
ter settings to maximize performance, using sequential model-based
optimization [14] (a Bayesian optimization method). Though there
is one Python based implementation called Auto-sklearn [26], we
chose Auto-WEKA because it comprises a larger space of models
and hyperparameters [38] compared to Auto-sklearn. This ended
up identifying “Bagging (Bootstrap aggregating)” [13] as the best
technique. “Bagging” is an ensemble based approach that uses mul-
tiple models to fit the bootstrap samples generated from the original
data and then uses voting for classification. Repeated Incremental
Pruning to Produce Error Reduction (RIPPER) [20] was identified
as the base learner (accessible at weka.classifiers.rules.JRip) by Auto-
WEKA. These results were generated by running Auto-WEKA with
random seed 123 for 4 hours.

3.7 Evaluation

We report the standard precision, recall, and AUC (Area Under the
receiver operating characteristic Curve) to asses the performance of
the prediction models, because it is independent of prior probabili-
ties [9]. Also, AUC is a better measure of classifier performance than
accuracy because it is not biased by the size of test data. Moreover,
AUC provides a “broader" view of the performance of the classifier
since both sensitivity and specificity for all threshold levels are
incorporated in calculating AUC. Other work related to prediction
have used AUC for comparison purposes [25, 28, 29, 63]. We list
the formula used for calculating precision, recall and F-measure
below. The AUC curve is created by plotting the recall against the
false positive rate (FPR) at various threshold settings. We list the
formula of FPR also.

e Precision (P): A measure of whether the Severe predictions were
actually difficult.

t
tp + fp

(1)

precision =

e Recall (R): A measure of the percentage of Severe instances that
the approach managed to correctly predict.

t
recall = P (2

tp + fn

o False positive rate (FPR): A measure of the ratio of the number
of Severe conflict wrongly categorized and the total number of
actual Severe conflicts.

o

FPR =
fp+ta

®)

3.8 Cross-project prediction

Cross-project prediction is important for some projects, specially
projects that do not have historical data to perform any significant
training. Hence, we investigated whether it is feasible to perform
cross-project training following the method used by Rahman et
al. [52]. We do so by training models on one project and testing on
all other projects, ignoring time-ordering.

4 RESULTS

Here we discuss the results of our study by placing them in the
context of three research questions, which investigate the the ability
to predict the difficulty of a conflict (RQ1), factors that are useful in
determining the difficulty of a conflict (RQ2), and whether we can
perform cross-project merge conflict difficulty prediction (RQ3).

4.1 RQ1: How well can we predict the difficulty
of merge conflicts?

To answer this research question, we trained four different machine
learning algorithms: Bayes Network (BayesNet), Logistic Regres-
sion, Support Vector Machine (SVM), and Multi-Layer Perceptron
(Perceptron). We also used Auto-WEKA [38], which automatically
searches through the joint space of WEKA's learning algorithms
and their respective hyperparameter settings to maximize perfor-
mance and identify the best classifier. The algorithm with the best
performance according to Table 4 is “Bagging (Bootstrap aggregat-
ing)” with “RIPPER” as the base learner, which has the highest AUC
(0.85). Bagging is closely followed by Bayes Network, which still
performs better-than-chance with 0.78 AUC. On the other hand,

Planning for Untangling: Predicting the Difficulty of Merge Conflicts

Table 4: Performance of the classifiers. Bagging has the high-
est AUC at 0.85.

Precision Recall AUC

SVM 0.70 0.70 0.56
LR! 0.70 0.65 073
Perceptron 0.75 0.69 0.75
Bayes Network 0.75 0.75 0.78
Bagging 0.79 079 085

i Logistic Regression

SVM performs worst (0.56 AUC). Table 4 shows the results in terms
of precision, recall, and AUC.

Observation 1: The difficulty of resolving merge conflicts can
be predicted with an AUC value of 0.85 when using a Bagging
classifier.

Additionally, we use our Bagging model on the full corpus of
6,380 conflicts to see the characteristics of the merge conflicts; those
that are predicted as Severe or Trivial. The model identifies 21% of
the conflicts as Severe, and the rest 79% are classified as Trivial.

In our context, precision shows how well we correctly predict
Severe conflicts, recall shows how many of the Severe conflicts we
are able to find. We posit that in our scenario, precision has a higher
priority than recall. This is because incurring more false positives
is likely to make the developer to distrust the tool. As Bagging
outperformed all other classifiers, we report the precision, recall,
and AUC of Bagging separately for the two classes (Severe and
Trivial) in Table 5.

Table 5: Results of the Bagging classifier, per class

Class Precision Recall AUC

Severe 0.80 0.49 0.76
Trivial 0.79 0.94 0.85

Observation 2: Difficult merge conflicts can be predicted with
a precision of 0.80 when using a Bagging classifier.

4.2 RQ2: Which characteristics of merge
conflicts are associated with its difficulty?

In Section 4.1 we show that it is possible to predict the difficulty of
a merge conflict with high accuracy. Our next step is to understand
what are the characteristics of difficult conflicts. For this purpose
we use feature subset selection (FSS). Specifically, we use “Wrapper”
based methods, which considers the selection of a set of features as
a search problem. Different combinations of features are prepared,
evaluated and compared to other combinations [35]. “Wrapper”
methods are also able to detect the possible interactions between
features. In this technique, a predictive model is used to evaluate
the combinations of features and a score is assigned based on ac-
curacy of the model. We used RIPPER [20] as the predictive model
for feature selection, since it was identified as best classifier for
predicting merge conflict difficulty as explained in (Section 3.6).
Using FSS we obtain a set of ten factors from our initial set of 12.
The ten selected factors encompass all the four metric categories
(complexity, diffusion, size, and development pattern) to which the

ICSE’2020, May 2020, Seoul, South Korea

original factors belonged (see Table 3). All these factors can be
calculated before the conflict occurs. This suggests that each of
these categories are relevant in predicting difficult merge conflicts,
even before the developer faces the conflict.

Table 6 presents additional information about these ten factors.
Two of these factors include complexity metrics, such the CCsy
and the CCyq 4 referring to the mean and the sum of the cyclomatic
complexities of all files modified in both branches. This suggests
that the complexity of the code is an important metric that affects
the difficulty in resolving a conflict. However, calculating com-
plexity metrics require specialized (standalone) analysis tools. So,
in the worst case, developers therefore have to “guestimate” the
complexity of the code based on their own experience.

Table 6: Feature Selection Results (Sorted based on relative
importance)

Human
P ived
Category Metric FSS Ve
Importance
[44]
Complexity CCsym 1 1
Diffusion Dependencymax 2 7
Diffusion Dependencygug 3 7
Complexity CCgyyqg 4 1
Diffusion ASTdiff 5 6
Size LOCyiry 6 6
Size LOC 7 4
. Not
Size Number of authors 8 o
mentioned
Not
Dev. Pattern Patternp,anch 9 mentioned
Not
Dev. Pattern Patterngyihor 10 mentioned

Observation 3: We identify a subset of ten factors that include
complexity, diffusion, size, and development pattern that can
predict the difficulty of merge conflicts.

Table 6 also shows that development process related metrics are
less influential (Number of authors, Patterny, qpcp and Patterngyhor)

compared to code related metrics (CCsym, Dependencymax, Dependencyaug,

CCauvyq, ASTyirf, LOCyipr and LOC). This led us to investigate
whether there is any difference between these two types of metrics
when it comes to predicting merge conflict difficulty. We perform
this analysis since both process and product metrics have known
differences in prediction capability in the context of defect predic-
tion [52]. We built the same set of classifiers shown in Table 4, once
using only the process related metrics and once using only code
related metrics. Tables 7 and 8 shows the results in terms of preci-
sion, recall, and AUC. Surprisingly, both process and code related
metrics have similar prediction capabilities (AUC values of 0.69 vs.
0.70), unlike defect prediction, where process related metrics were
found to be more powerful [52].

In the last column of Table 6 we report the factors that McKee at
al. [44] identify as factors used by software practitioners to gauge
merge conflict difficulty. They identified these factors through a

ICSE’2020, May 2020, Seoul, South Korea

Table 7: Performance of the classifiers built using only pro-
cess related metrics (Number of authors, Patterny, ., and
Patterngyhor)-

Precision Recall AUC

SVM 0.68 0.69 0.55
LR! 0.69 0.63 070
Perceptron 0.65 0.63 0.72
Bayes Network 0.70 0.70 0.69
Bagging 0.69 071 0.69

i Logistic Regression

Table 8: Performance of the classifiers built using only
code related metrics (CCsym, Dependencymaqx, Dependencyqyg,
Ccavg, ASTdiff) LOCdiff and LOC).

Precision Recall AUC

SVM 0.65 0.68 0.52
LR/ 0.68 069 0.67
Perceptron 0.55 0.48 0.49
Bayes Network 0.70 0.71 0.72
Bagging 0.70 0.71 0.70

Logistic Regression

survey of software practitioners. Except for the complexity cate-
gory, none of the other top features mentioned by practitioners are
in the top features identified by FSS and vice versa. Clearly there
is a disjoint between the human perceived features and machine
learned features. We discuss this further in Section 5.

Observation 4: We identify differences between-human per-
ceived features and machine-learned features for predicting
the difficulty of merge conflicts, for example diffusion, which
is perceived as unimportant by developers, but picked up as
important by our model.

4.3 RQ3:Is cross-project training possible to
predict difficult merge conflicts?

In RQ1 we tested our models using a 10-fold cross-validation with
all our training data (600 conflicts). However, some projects may
not have historical data to perform any significant training. Cross-
project prediction has been investigated in other areas of software
engineering such as defect prediction [42, 59, 64]. However, to the
best of our knowledge, no one has investigated the applicability of
cross-project merge conflict difficulty prediction. We followed the
method used by Rahman et al. [52] to perform cross-project merge
conflict difficulty prediction. We train models on one project using
our best algorithm: “Bagging using RIPPER” and test on all other
projects.

Figure 4 shows the portability of models across projects for dif-
ferent sets of evaluation metrics (precision, recall, F-measure and
AUC). Performance clearly degrades in cross-project settings in
comparison to “Bagging using RIPPER” algorithms performance of
0.85 AUC, shown in Table 4.

Caius Brindescu, Iftekhar Ahmed, Rafael Leano, and Anita Sarma

0.8-

0.7- | |

0.6-

Score

0.5-

04-

0.3-
' ' ' '
AUC F-Measure Precision Recall

Category

Figure 4: Precision, recall, f-measure and AUC for cross-
project training.

Observation 5: Using cross-project training it is possible to
build model that can be applied to an individual project with
better-than-chance results (AUC=0.60 on average).

5 DISCUSSION

Centrality Matters: The goal of our study is to investigate whether it
is feasible to predict the difficulty level of a merge conflict by using
automated (machine learning) techniques. One factor that emerged
as relevant is Dependency. A file that has high Dependency is likely
to be highly coupled with other parts of the code, and therefore has
high centrality. This is problematic for two reasons. First, as the
file is central, it has more reasons to change. For example, a class
with multiple functionalities (i.e. a God class [3]) is more likely to
be changed for any kind of modification of the software. Second,
the more a file gets changed, the more it’s likely to be involved in a
merge conflict. Moreover, the conflict is likely to contain disparate
changes. This presents a challenge as the developer has to under-
stand all the changes involved before resolving the merge conflict.
Both our machine learning classifier and developers agree that this
is a factor that determines the merge conflict resolution difficulty.

Tangled Changes: In our analysis we find that Patterng, po, is a
significant factor in predicting merge conflict difficulty. A reason
for this might be that the more authors that are involved in the
development process, the more disparate the conflicting changes
are—because each developer is likely working on a different func-
tionality. So, whenever a conflict occurs, the developer has to un-
derstand the broader context of the changes before attempting to
resolve the conflict.

Similarly, a longer branch pattern (Patterny, ,pcp) means that
the changes are more tightly tangled. This makes the changes more
difficult to untangle when resolving the conflict. Interestingly, while

Planning for Untangling: Predicting the Difficulty of Merge Conflicts

our classifier identified these as important factors, the developers
did not. This is an indication that developers are not aware that
this could be a potential pain point.

Size does matter: Our classifier also identified the size difference
(LOCy;ff) between the two branches as a relevant factor for contlict
difficulty prediction. This is intuitive, as the more lines are changed,
the harder it is to understand the changes that were made (in that
change set). This, in turn, makes it more difficult to the place that
change set in the context of the rest of the code base. When dealing
with the difference in terms of AST nodes (ASTy;¢), this becomes
even more important, as the AST node difference is more likely to
highlight semantic changes. In this case, both the classifier and the
developers agree that the size difference between the two branches
is an important factor in determining the merge conflict difficulty.

It’s Complicated: It’s well known that code with higher cyclo-
matic complexity is more difficult to understand. Therefore, it’s not
surprising that our classifier identified CCgsy,, as a significant factor
for identifying the difficulty of a merge conflict. Another aspect is
that code with high cyclomatic complexity is usually indicative of
a complicated control structure. Therefore, conflicts in that area
are more likely to be semantic in nature. Prior research has shown
that areas of code affected by such conflicts are more likely to be
buggy [2]. In this case, both the classifier and the developers agree
that this is an important factor.

Learn from others: Our final observation is that models are portable
between software projects. This is an indication that the factors
that contribute toward merge conflict difficulty are more or less
project independent. Therefore, our technique can be applied to
new projects, or to projects with little development history and still
prove beneficial to developers.

6 IMPLICATIONS

Our findings have multiple implications for tool builders, researchers,
and practitioners.

6.1 Researchers

Our model for predicting merge conflict difficulty achieved an AUC
value of 0.76 when predicting the minority class, which is a high
value compared to a baseline of random classification [43]. However,
there is still room for improvement. The research community should
focus on identifying different types of factors (social, product and
process) and investigate their effect on overall prediction accuracy,
with the goal of improving the overall prediction accuracy.

Our results inform future research by providing insights into the
factors that are associated with the difficulty of a merge conflict.
Projects share similar features, as demonstrated by the moderate
performance of cross-project merge conflict difficulty prediction.
This also indicates that the prediction process can be bootstrapped
even for project that lacks history. We recommend that researchers
should also focus on identifying the best project selection criteria
for bootstrapping cross-project prediction. For bootstrapping, we
should use similar projects. However, what constitutes as a simi-
larity metric between the project, in this context, is still an open
research question. Our results show that cyclomatic complexity is
the most important metric when predicting difficulty. (Table 6), so
projects with similar Cyclomatic complexity should could used for

ICSE’2020, May 2020, Seoul, South Korea

bootstrapping. However, further investigation is required to make
any conclusive or definitive remarks.

We also found that Auto-WEKA, which automatically searches
through the joint space of WEKA’s learning algorithms, and their
respective hyperparameters, helped us to identify the best classifier
and increased the AUC value from 0.78 to 0.85 (Table 4). Our finding
is inline with the findings of other researchers [57, 58] who have
shown the benefit of parameter optimization in improving classifier
performance. Therefore, we recommend that researchers using
machine learning classifiers should seriously consider parameter
optimization to ensure the best performance of the classifiers.

6.2 Tool builders

When looking at the types of factors that make a merge conflict
difficult, we identified categories relating to the complexity of the
code (Complexity), extent of the change (Diffusion) and the length
of branch pattern (Development Pattern). The Complexity and Diffu-
sion metrics are already used by researchers and tool builders for
merge conflict prediction. However, we are the first to associate the
length of a branch pattern to merge conflicts and their difficulty.
Further research can help identify threshold of branch pattern af-
ter which a merge conflict becomes severe. Tool builders can use
such thresholds as a criteria to filter and prioritize the notifications
about potential conflicts. This will not only help users manage the
information load, but also will have impact on the quality of the
final product [2].

6.3 Developers

Our results indicate that the more “tangled” a piece of code is, the
more difficult it will be to resolve a conflict related to that code. So
developers can use the length of Patterng,, ;o and Patterny,qnch
in deciding merge conflict resolution strategy. Moreover, it’s more
likely that a code with bigger pattern length has diverged a lot
from the initial point and has become difficult for any individual to
understand completely. In such cases, it will be more productive to
do a collaborative merge [21], instead of a developer performing
the merge by herself.

We also found that all ten significant factors in determining
merge conflict difficulty can be collected even before the merge con-
flict actually occurs. Current awareness tools are already collecting
these information when predicting emerging conflicts. Therefore,
without further overhead, awareness tools can use our model to
predict the difficulty of the emerging conflict, which can be then
used as a prioritization criteria when notifying users. Tools can also
recommend developers who are most suited to resolve a conflict
based on the historical data of merge resolutions. The rationale
would be that developers with more experience of resolving difficult
conflicts in the past are suitable candidates for resolving a Severe
conflict, as compared to someone who lacks the experience.

7 THREATS TO VALIDITY

Our research findings may be subject to the concerns that we list
below. We have taken all possible steps to neutralize the impacts
of these possible threats, but some couldn’t be mitigated and it’s
possible that our mitigation strategies may not have been effective.

ICSE’2020, May 2020, Seoul, South Korea

Our samples have been from a single source - Github. This may
be a source of bias, and our findings may be limited to open source
programs from Github. However, we believe that the large number
of projects sampled more than adequately addresses this concern.

Another threat to our findings is that, Git tracks the version
history of a project as it occurred but it also allows history rewriting
using the “rebase” command. It is known that some development
teams use “rebase" instead of “merge" to reintegrate branches [18]
which means that may have missed merges in our analysis and the
number of merges we analyzed is a lower bound as compared to
the actual total number of merges in the projects.

Although we use 24 factors spanning across six categories, there
are likely other features that we did not measure. For example, we
suspect that the design patterns of a program might influence the
likelihood of a conflict resolution being difficult. We plan to expand
our metric set to include additional categories in future work.

Our training and testing data had to be manually labeled since
this information is not currently available in CM systems or issue
trackers. Therefore, our labels may not accurately represent the real
merging difficulty because of lack of domain expertise. Our labeling
process included inter-rater reliability to prevent individual bias and
to reduce this threat. Additionally, the experience and familiarity
with the source code and the project can make a conflict difficult
to resolve for one developer but simple for another. As we had
multiple researchers and we also had a high inter-rater agreement,
we assume this should minimize the aforementioned threat.

Another threat would be that we excluded non-source files from
our manual analysis (e.g. configuration xml file etc.), but changes
to non-source files can have impact on the program’s execution
if these files are involved in the build/deploy process or for code
generation and ultimately make the merge resolution difficult.

8 CONCLUSIONS AND FUTURE WORK

In this empirical study, the first of its kind, we investigated the dif-
ferent aspects that can impact the difficulty level of resolving merge
conflicts. We evaluated five different classification techniques from
different families and identified “Bagging using RIPPER” as the base
learner to be the best model; with an AUC of 0.76. We also identified
a set of ten metrics that are most influential while predicting the
difficulty level of a conflict which include metrics about the com-
plexity of the code, the size of the change, and development pattern
etc. We also found that there is a disconnect between the factors
developers use to gauge the difficulty of a conflict and the factors
our automatic classification technique identified as important. Fi-
nally, we showed that we are able to perform cross-project merge
conflict difficulty prediction; with median AUC of 0.60. Therefore,
our results show that we can bootstrap prediction in projects with
no (labeled) data or only small amount of history, by training on
other projects. Our study opens a new avenue in Software Engi-
neering research related to predicting the difficulty level of a merge
conflict and help developers plan the merge conflict management
process efficiently.

We also provide actionable implications for researchers, tool
builders, and practitioners to harness the results of our study. In
future work, we hope to explore whether these factors can be

Caius Brindescu, Iftekhar Ahmed, Rafael Leano, and Anita Sarma

seamlessly merged into tools or techniques to assist developers’
workflows.

REFERENCES

[1] 2017. TIOBE Index for April 2017. https://tiobe.com/tiobe-index//. Accessed:
2017-04-18.

[2] Iftekhar Ahmed, Caius Brindescu, Umme Ayda Mannan, Carlos Jensen, and Anita
Sarma. 2017. An Empirical Examination of the Relationship between Code Smells
and Merge Conflicts. In Empirical Software Engineering and Measurement (ESEM),
2017 ACM/IEEE International Symposium on. IEEE, 58-67.

[3] Iftekhar Ahmed, Umme Ayda Mannan, Rahul Gopinath, and Carlos Jensen. 2015.
An empirical study of design degradation: How software projects get worse over
time. In Empirical Software Engineering and Measurement (ESEM), 2015 ACM/IEEE
International Symposium on. IEEE, 1-10.

[4] Sven Apel, Olaf Lef3enich, and Christian Lengauer. 2012. Structured merge with
auto-tuning: balancing precision and performance. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering. ACM,
120-129.

[5] Sven Apel, Jérg Liebig, Benjamin Brandl, Christian Lengauer, and Christian Kast-
ner. 2011. Semistructured merge: rethinking merge in revision control systems. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering. ACM, 190-200.

[6] Henrike Barkmann, Riidiger Lincke, and Welf Lowe. 2009. Quantitative evalu-
ation of software quality metrics in open-source projects. In 2009 International
Conference on Advanced Information Networking and Applications Workshops.
IEEE, 1067-1072.

[7] Stephen P Berczuk and Brad Appleton. 2002. Software configuration management
patterns: effective teamwork, practical integration. Addison-Wesley Longman
Publishing Co., Inc.

[8] Thomas Berlage and Andreas Genau. 1993. A framework for shared applications
with a replicated architecture. In ACM Symposium on User Interface Software and
Technology. Citeseer, 249-257.

[9] Abraham Bernstein, Jayalath Ekanayake, and Martin Pinzger. 2007. Improving
defect prediction using temporal features and non linear models. In Ninth inter-
national workshop on Principles of software evolution: in conjunction with the 6th
ESEC/FSE joint meeting. ACM, 11-18.

[10] Valdis Berzins. 1994. Software merge: semantics of combining changes to pro-
grams. ACM Transactions on Programming Languages and Systems (TOPLAS) 16,
6 (1994), 1875-1903.

[11] Jacob T Biehl, Mary Czerwinski, Greg Smith, and George G Robertson. 2007.
FASTDash: a visual dashboard for fostering awareness in software teams. In
Proceedings of the SIGCHI conference on Human factors in computing systems.
ACM, 1313-1322.

[12] Barry W Boehm, John R Brown, and Mlity Lipow. 1976. Quantitative evaluation

of software quality. In Proceedings of the 2nd international conference on Software

engineering. IEEE Computer Society Press, 592-605.

Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123-140.

Eric Brochu, Vlad M Cora, and Nando De Freitas. 2010. A tutorial on Bayesian

optimization of expensive cost functions, with application to active user modeling

and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010).

Yuriy Brun, Reid Holmes, Michael D Ernst, and David Notkin. 2011. Proactive

detection of collaboration conflicts. In Proceedings of the 19th ACM SIGSOFT sym-

posium and the 13th European conference on Foundations of software engineering.

ACM, 168-178.

[16] Jim Buffenbarger. 1995. Syntactic software merging. In Software Configuration

Management. Springer, 153-172.

Guilherme Cavalcanti, Paola Accioly, and Paulo Borba. 2015. Assessing semistruc-

tured merge in version control systems: A replicated experiment. In 2015

ACM/IEEE International Symposium on Empirical Software Engineering and Mea-

surement (ESEM). IEEE, 1-10.

Scott Chacon and Ben Straub. 2014. Pro git. Apress.

Jacob Cohen, Patricia Cohen, Stephen G West, and Leona S Aiken. 2013. Applied

multiple regression/correlation analysis for the behavioral sciences. Routledge.

William W. Cohen. 1995. Fast Effective Rule Induction. In Twelfth International

Conference on Machine Learning. Morgan Kaufmann, 115-123.

Catarina Costa, Jair Figueiredo, Anita Sarma, and Leonardo Murta. 2016. TIP-

Merge: recommending developers for merging branches. In Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering. ACM, 998-1002.

Cleidson RB De Souza, David Redmiles, and Paul Dourish. 2003. Breaking the code,

moving between private and public work in collaborative software development.

In Proceedings of the 2003 International ACM SIGGROUP conference on Supporting

group work. ACM, 105-114.

Lucas Batista Leite De Souza and Marcelo De Almeida Maia. 2013. Do software

categories impact coupling metrics?. In Proceedings of the 10th working conference

on mining software repositories. IEEE Press, 217-220.

=
&

[15

(17

e
)

[20

[21

[22

[23

https://tiobe.com/tiobe-index//

Planning for Untangling: Predicting the Difficulty of Merge Conflicts

[24]

[25]

[26]

[28]

[34]

[35

[36

[37]

[38

[39

[40]

[41

[42]

[43]

[44

[45

[46]

[48]

[49

[50

Prasun Dewan and Rajesh Hegde. 2007. Semi-synchronous conflict detection
and resolution in asynchronous software development. In ECSCW 2007. Springer,
159-178.

Dario Di Nucci, Fabio Palomba, Giuseppe De Rosa, Gabriele Bavota, Rocco Oliveto,
and Andrea De Lucia. 2018. A developer centered bug prediction model. IEEE
Transactions on Software Engineering 44, 1 (2018), 5-24.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. 2015. Efficient and robust automated machine learning.
In Advances in neural information processing systems. 2962-2970.

M. Fowler. [n.d.]. Continuous Integration. http://martinfowler.com/articles/
continuouslntegration.html. Accessed: 2017-03-1.

Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C Gall. 2012.
Method-level bug prediction. In Proceedings of the ACM-IEEE international sym-
posium on Empirical software engineering and measurement. ACM, 171-180.
Emanuel Giger, Martin Pinzger, and Harald C Gall. 2011. Comparing fine-grained
source code changes and code churn for bug prediction. In Proceedings of the 8th
Working Conference on Mining Software Repositories. ACM, 83-92.

GitHub Inc. [n.d.]. Software Repository. http://www.github.com.

Mario Luis Guimaraes and Antonio Rito Silva. 2012. Improving early detection
of software merge conflicts. In Proceedings of the 34th International Conference on
Software Engineering. IEEE Press, 342-352.

Frank E Harrell Jr. 2015. Regression modeling strategies: with applications to linear
models, logistic and ordinal regression, and survival analysis. Springer.

Lile Hattori and Michele Lanza. 2010. Syde: a tool for collaborative software
development. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 2. ACM, 235-238.

Daniel Jackson, David A Ladd, et al. 1994. Semantic Diff: A Tool for Summarizing
the Effects of Modifications.. In ICSM, Vol. 94. 243-252.

George H John, Ron Kohavi, and Karl Pfleger. 1994. Irrelevant features and
the subset selection problem. In Machine Learning Proceedings 1994. Elsevier,
121-129.

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proceedings of the 11th working conference on mining software repositories. ACM,
92-101.

Bakhtiar Khan Kasi and Anita Sarma. 2013. Cassandra: Proactive conflict mini-
mization through optimized task scheduling. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering. IEEE Press, 732-741.

Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-
Brown. 2017. Auto-WEKA 2.0: Automatic model selection and hyperparameter
optimization in WEKA. The Journal of Machine Learning Research 18, 1 (2017),
826-830.

Olaf Lefenich, Sven Apel, and Christian Lengauer. 2015. Balancing precision and
performance in structured merge. Automated Software Engineering 22, 3 (2015),
367-397.

Olaf Leflenich, Janet Siegmund, Sven Apel, Christian Kastner, and Claus Hunsen.
2018. Indicators for merge conflicts in the wild: survey and empirical study.
Automated Software Engineering 25, 2 (2018), 279-313.

Ernst Lippe and Norbert Van Oosterom. 1992. Operation-based merging. In ACM
SIGSOFT Software Engineering Notes, Vol. 17. ACM, 78-87.

Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo Chen. 2012. Transfer learning for
cross-company software defect prediction. Information and Software Technology
54,3 (2012), 248-256.

Simon Mason and N.E. Graham. 2002. Areas beneath the relative operating
characteristics (ROC) and relative operating levels (ROL) curves: Statistical signié
cance and interpretation. Quarterly Journal of the Royal Meteorological Society
128 (07 2002), 2145 - 2166. https://doi.org/10.1256/003590002320603584

Shane McKee, Nicholas Nelson, Anita Sarma, and Danny Dig. 2017. Software
practitioner perspectives on merge conflicts and resolutions. In 2017 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). IEEE,
467-478.

Gleiph Ghiotto Lima Menezes, Leonardo Gresta Paulino Murta, Marcio Oliveira
Barros, and Andre Van Der Hoek. 2018. On the Nature of Merge Conflicts: a
Study of 2,731 Open Source Java Projects Hosted by GitHub. IEEE Transactions
on Software Engineering (2018).

Tom Mens. 2002. A state-of-the-art survey on software merging. IEEE transactions
on software engineering 28, 5 (2002), 449-462.

Webb Miller and Eugene W Myers. 1985. A file comparison program. Software:
Practice and Experience 15, 11 (1985), 1025-1040.

Eugene W Myers. 1986. AnO (ND) difference algorithm and its variations. Algo-
rithmica 1, 1-4 (1986), 251-266.

Nicholas Nelson, Caius Brindescu, Shane McKee, Anita Sarma, and Danny Dig.
2019. The life-cycle of merge conflicts: processes, barriers, and strategies. Empir-
ical Software Engineering (2019), 1-44.

Antti Nieminen. 2012. Real-time collaborative resolving of merge conflicts. In 8th
International Conference on Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom). IEEE, 540-543.

[51]

[52

(53]

[54

[55

[56

[57

(58]

o
20,

(60

[61

[62

[64

[65

ICSE’2020, May 2020, Seoul, South Korea

Joao Gustavo Prudéncio, Leonardo Murta, Claudia Werner, and Rafael Cepéda.
2012. To lock, or not to lock: That is the question. Journal of Systems and Software
85, 2 (2012), 277-289.

Foyzur Rahman and Premkumar Devanbu. 2013. How, and why, process metrics
are better. In Software Engineering (ICSE), 2013 35th International Conference on.
IEEE, 432-441.

Anita Sarma, David F Redmiles, and Andre Van Der Hoek. 2012. Palantir: Early
detection of development conflicts arising from parallel code changes. IEEE
Transactions on Software Engineering 38, 4 (2012), 889-908.

Francisco Servant, James A Jones, and André Van Der Hoek. 2010. CASI: pre-
venting indirect conflicts through a live visualization. In Proceedings of the 2010
ICSE Workshop on Cooperative and Human Aspects of Software Engineering. ACM,
39-46.

Haifeng Shen and Chengzheng Sun. 2005. Syntax-based reconciliation for asyn-
chronous collaborative writing. In 2005 International Conference on Collaborative
Computing: Networking, Applications and Worksharing. IEEE, 10-pp.

Martin Shepperd. 1988. A critique of cyclomatic complexity as a software metric.
Software Engineering Journal 3, 2 (1988), 30-36.

Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2016. Automated parameter optimization of classification techniques
for defect prediction models. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). IEEE, 321-332.

Ayse Tosun and Ayse Bener. 2009. Reducing false alarms in software defect
prediction by decision threshold optimization. In Proceedings of the 2009 3rd
International Symposium on Empirical Software Engineering and Measurement.
IEEE Computer Society, 477-480.

Burak Turhan, Ayse Tosun, and Ayse Bener. 2011. Empirical evaluation of mixed-
project defect prediction models. In 2011 37th EUROMICRO Conference on Software
Engineering and Advanced Applications. IEEE, 396-403.

Bernhard Westfechtel. 1991. Structure-oriented merging of revisions of software
documents. In Software Configuration Management Workshop: Proceedings of the 3
rd international workshop on Software configuration management, Vol. 12. 68-79.
Jan Wloka, Barbara Ryder, Frank Tip, and Xiaoxia Ren. 2009. Safe-commit analysis
to facilitate team software development. In Software Engineering, 2009. ICSE 2009.
IEEE 31st International Conference on. IEEE, 507-517.

Xin Xia, Emad Shihab, Yasutaka Kamei, David Lo, and Xinyu Wang. 2016. Predict-
ing crashing releases of mobile applications. In Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement.
ACM, 29.

Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. 2014. Towards
building a universal defect prediction model. In Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM, 182-191.

Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and
Brendan Murphy. 2009. Cross-project defect prediction: a large scale experiment
on data vs. domain vs. process. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ACM, 91-100.

Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl.
2005. Mining version histories to guide software changes. IEEE Transactions on
Software Engineering 31, 6 (2005), 429-445.

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://www.github.com
https://doi.org/10.1256/003590002320603584

	Abstract
	1 Introduction
	2 Related Work
	2.1 Early detection
	2.2 Merging Assistance
	2.3 Prevention
	2.4 Conflict difficulty

	3 Methodology
	3.1 Project Selection Criteria
	3.2 Conflict Identification
	3.3 Data Collection
	3.4 Training Data Labeling
	3.5 Feature Selection
	3.6 Machine Learning
	3.7 Evaluation
	3.8 Cross-project prediction

	4 Results
	4.1 RQ1: How well can we predict the difficulty of merge conflicts?
	4.2 RQ2: Which characteristics of merge conflicts are associated with its difficulty?
	4.3 RQ3: Is cross-project training possible to predict difficult merge conflicts?

	5 Discussion
	6 Implications
	6.1 Researchers
	6.2 Tool builders
	6.3 Developers

	7 Threats to Validity
	8 Conclusions and Future Work
	References

