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ABSTRACT
Mentoring is traditionally viewed as a dyadic, top-down apprentice-
ship. This perspective, however, overlooks other forms of informal
mentoring taking place in everyday activities in which developers
invest time and effort. Here, we investigate informal mentoring
taking place in Open Source Software (OSS). We define a specific
type of informal mentoring—implicit mentoring—situations where
contributors guide others through instructions and suggestions
embedded in everyday (OSS) activities. We defined implicit men-
toring by first performing a review of related work on mentoring,
and then through formative interviews with OSS contributors and
member-checking. Next, through an empirical investigation of Pull
Requests (PRs) in 37 Apache Projects, we built a classifier to ex-
tract implicit mentoring. Our analysis of 107,895 PRs shows that
implicit mentoring does occur through code reviews (27.41% of all
PRs included implicit mentoring) and is beneficial for both mentors
and mentees. We analyzed the impact of implicit mentoring on
OSS contributors by investigating their contributions and learning
trajectories in their projects. Through an online survey (N=231), we
then triangulated these results and identified the potential benefits
of implicit mentoring from OSS contributors’ perspectives.
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1 INTRODUCTION
Open Source Software (OSS) projects are volunteer-led commu-
nities where contributors worldwide collaborate to create large,
complex software [14, 95]. Mentoring plays a key role in ensuring
the sustainability of OSS projects by training new (and current)
contributors who need to learn the necessary technical skills and
the process and cultural norms of the community.

Mentoring usually describes an interpersonal relationship where
an experienced contributor (the mentor) provides functional ad-
vice and interpersonal guidance to an inexperienced individual
(the mentee) [47]. Mentoring relationships between the two parties
facilitate the transfer of declarative knowledge–technical facts that
mentees need to accomplish their tasks–and procedural knowledge
about navigating the contribution process and project culture [5, 74].
Research shows that mentoring is an effective means for newcomer
training and improves the onboarding experience and retention of
contributors in OSS [21, 74].

It is no surprise then that OSS foundations have heavily invested
in mentorship programs such as the Google Summer of Code schol-
arship program, which paired 1,289 students with mentors from
across OSS organizations in summer 2021 [32]. The Linux Foun-
dation currently has seven mentorship programs and has invested
over 2.5 million USD in support of first-time and underrepresented
OSS contributors [52]. Additionally, OSS projects (e.g., Apache Men-
toring Program [24]) connect newcomers to project mentors by
providing some basic mentoring structure (e.g., mentor-mentee
interest matching and guidance on communication, task scope, and
progress checkpoints).

Numerous studies have investigated the benefits of formal men-
toring [21, 83]. However, the dedicated time and effort needed to be
a mentor can make formal mentorship programs impractical [21].
Mentors need to devote time and effort to guide newcomers, and
themselves face a variety of challenges, such as mismatches be-
tween mentor-mentee’s background and interests, difficulty finding
tasks that match newcomers’ skills and the project timeline, lack of
time, etc [4]. Mentors can also find it challenging to keep the mentee
engaged, especially if the project culture is harsh or the mentees
are not proactive/intensely interested in OSS [5]. The additional
effort reduces the technical output of mentors in OSS [20]. Further,
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Labuschagne and Holmes [50] found that, although mentees val-
ued mentorship programs, these often do not result in long-term
retention of contributors.

Outside of such formal mentoring, contributors actively seek
guidance and support from each other via informal channels such
as direct contact through emails and video conferencing or meeting
at conferences. However, such non-code contributions are rarely
given the same acknowledgement as code contributions [86]. As
a case in point, when interviewed, an experienced OSS mentor
mentioned: “there is no recognition, no kudos, no kind of positive
reinforcement for them to continue being a mentor. So, usually, they
are a mentor once and then they leave” [P41]. Mentoring as a side
hobby, therefore, becomes difficult to sustain. As Bosu and Sultana
[9] found that those who did lots of mentoring felt that as a result
of their community service they “lost their engineering voice”.

One way to overcome this issue is to acknowledge (and pro-
mote) informal mentoring that can implicitly occur in everyday
technical activities, such as code reviews. It is well known that code
reviews are not always supportive. Past work has found that the
ratio of negative sentiments is higher than that of positive senti-
ments in code review comments [62], and that destructive criticism,
negative feedback that is nonspecific and inconsiderate, is fairly
common [34]. Thus, acknowledging those who take the additional
effort to mentor by providing constructive feedback and explana-
tion when suggesting changes or improvement is worthwhile. Such
recognition is important not only to encourage “implicit” mentors,
but also to sustain this mode of mentoring, which potentially: (1)
requires less effort than that needed for a dedicated mentor-mentee
relationship, (2) is topical and aligned with the mentor’s technical
interests, (3) is part of the mentor’s development activity, and (4)
allows both the mentors and mentees to “learn on the job”.

To the best of our knowledge, no one has yet investigated the
prevalence and the impact of such a form of mentoring, prompting
us to ask:
RQ1: How can mentoring be implicitly provided in everyday
development tasks?
RQ2: How prevalent is “implicit mentoring” in OSS projects?
RQ3: How does implicit mentoring impact OSS contributors–
mentors and mentees?

Through a formative mixed-method study of literature review
and interviews with five senior OSS developers, we defined the
concept of implicit mentoring as a type of informal mentoring,
which we then validated through member checking (RQ1). We
then empirically investigated the occurrence of implicit mentoring
via Pull Requests (PRs) in 37 Apache projects (RQ2). We opted
to investigate Apache projects because these projects have well-
documented discussion procedures. Apache projects follow the
principles of open communication logging discussion online [25].
We opted to analyze PRs, as they are used in many scenarios beyond
basic patch submission (e.g., PR-comments can be used to conduct
code reviews, discuss new features [33], and provide feedback [44]).
Then, we used Machine Learning classification (Random Forest)
to identify the prevalence of implicit mentoring in these projects
automatically.

1P(N) refers to interview participant number.

We investigated the impact of implicit mentoring (RQ3) through
a quantitative analysis of developers’ contributions in our dataset
of 37 Apache projects. We then surveyed 231 developers who had
contributed to these projects to triangulate our results.

The significance of our contribution is threefold: (1) define im-
plicit mentoring in the context of OSS, (2) automatically identify
implicit mentoring from PR-comments, and (3) analyze the impact
of implicit mentoring on OSS contributors. Our results lay the foun-
dation for future research on supporting informal mentoring, as
well as provide guidance on how OSS communities can create an ap-
preciative community. As a survey participant aptly noted: “Getting
feedback from experts in a project you are interested in is priceless.
The only drawback is that those experts are often strapped for time
and can’t devote a lot of attention...It’s frustrating that [mentoring] is
not recognized or rewarded at all” [ASF-1042].

2 RELATEDWORK
Mentoring has been extensively researched in various domains.
In management and organizational literature, works have inves-
tigated the extent to which mentoring helps with organizational
citizenship behaviors (defined as positive employee attitude to the
organization) [18]. Payne and Huffman [63] investigated the rela-
tionship between mentoring and positive organizational attitudes
and found it to have a strong association with effective commit-
ment (employee’s emotional attachment or identification with the
organization) and continuance commitment with the organization.
In addition, Fagerholm et al. [21] investigated how mentoring and
project factors affect the onboarding process in OSS. In education
literature, Mullen and Klimaitis [59] conducted a literature review
of empirical studies onmentoring to identify other forms in addition
to formal mentoring. These included student mentoring done in
groups, among peers, and in collaborative or cross-cultural forms.

A primary advantage of mentoring to the mentee is the transfer
of knowledge and subject matter [19]. In education literature, men-
toring is one of the most effective strategies for mentees to improve
technical skills centered on a complicated job. By completing daily
tasks alongside professional mentors, mentees develop cognitive
processes that aid in problem-solving and show the validity of
their understanding [13]. In addition, when used in conjunction
with real-world work, mentoring aids in the development of com-
munication skills such as explaining, persuading, bargaining, and
establishing understanding [54]. Mentoring may also help mentees
to build strong personal connections. For example, mentees may
grow to trust and respect their mentors as they work together on
goals [17].

LaFleur and White [51] found that mentees and mentors have
similar experiences and perceptions. Mentors may also benefit
from learning new skills from their mentees, such as those related
to emerging technologies [49]. Mentees can help their mentors
improve their job performance by providing new perspectives and
knowledge [19]. In addition, mentors may feel a sense of generative
or immortality as they watch their mentees grow [71]. Mentors
gain personal satisfaction from observing and participating in the
success of their mentees [48].

2ASF-N refers to survey participant number.
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Figure 1: Overview of research method (RQ1).

In the context of research in OSS, most research only focuses on
formal mentoring, especially onboarding activities. Researchers had
found that mentoring allowed for a more effective onboarding expe-
rience than when newcomers entered a project through a natural,
non-deliberate process [20, 21]. Google, through its formal Google
Summer of Code (GSoC) mentorship program, aims to facilitate
onboarding to OSS [40]. However, several works have identified
the challenges that contributors face in OSS [4, 5].

Another form of mentoring is informal mentoring. Informal men-
toring is a valuable tool for employee grooming because it occurs
in a relationship that is voluntary and created by both parties [39].
According to Inzer and Crawford [39], informal mentoring occurs
in a relationship between two people where one gains insight,
knowledge, wisdom, friendship, and support from the other. Nandi
and Mandernach [60] found that students improve significantly
when they are mentored informally by analyzing student academic
records and source-code commit logs. In addition, studies have
found that formal mentoring is less effective than informal mentor-
ing [39, 60]. However, to the best of our knowledge, no prior work
has explored the benefits of participating in informal mentoring in
OSS. Our paper fills this gap in understanding by investigating one
form of informal mentoring, i.e., implicit mentoring.

3 IMPLICIT MENTORING IN OSS
Our goal was to identify implicit mentoring in OSS. In the following
subsections, we detail the applied methodology and the results.

3.1 Methodology
We start our investigation of implicit mentoring by exploring how
informal mentoring takes place in OSS (RQ1). We used a formative
mixed-method study design, where we first reviewed literature on
mentoring, following up with semi-structured interviews with OSS
contributors and member checking the results of our analysis. We
then surveyed 231 Apache Software Foundation developers to trian-
gulate our results. Figure 1 shows an overview of the methodology.

Literature review: We surveyed existing literature in the con-
text of mentoring in OSS to understand and contextualize existing
work on this topic [43]. We first conducted a pilot search on two
well-known digital libraries, IEEE and ACM, to identify optimal
keywords. This helped us identify relevant words used in mentor-
ing literature in Software Engineering, especially in OSS. Our final
list of search keywords included: “mentor”, “mentee”, “mentoring”.
Our initial search resulted in 54 publications. Then, the first and

Table 1: Demographic information of interview participants.

Mentoring experience

ID Gender OSS experiences Mentor Informal
/Formal Mentee Informal

/Formal
P1 Woman Over 10 years Y Both Y Both
P2 Man Over 10 years Y Both Y Both
P3 Woman 6-10 years Y Both Y Both
P4 Woman 6-10 years Y Both Y Both
P5 Woman 6-10 years Y Both Y Both

second authors read the titles and abstracts and only selected pa-
pers discussing mentoring in the abstract (N=17 papers). In case
our search criteria resulted in leaving out some relevant studies, we
performed a single iteration of backward snowballing [91] looking
for additional studies published in journals and other conferences,
as suggested by Keele et al. [42]. This resulted in six further arti-
cles in the educational literature outlining the extensive definition,
effects, implications of mentoring. Our final list included 23 papers.
By reviewing these publications, we gained a comprehensive under-
standing of the different flavors of mentoring, including its types,
channels, activities, and challenges.

Formative Interviews: We then conducted semi-structured in-
terviews with five OSS developers to learn about their experiences
regarding mentoring—both from the perspective of being a mentor
and a mentee. We recruited two developers, one from the Apache
Software Foundation and another from the Linux Foundation, both
of whom have spearheaded mentoring programs in OSS. We then
used snowball sampling method to recruit three additional partici-
pants (two from the Linux Foundation, and one from the Apache
Software Foundation). We stopped after five interviews, since we
reached saturation—participants’ responses did not provide any
new details about the mentoring channels, activities, or challenges
that we already identified from the literature review.

The interviews were done remotely, lasting around 30 minutes
each. Each interview was recorded with participants’ consent (fol-
lowing university-approved IRB protocol) and transcribed. Partici-
pants were offered a $50 gift card as compensation for their time.
Table 1 presents the demographic information of our participants.
During the interview, we asked participants questions about their
roles and experience in OSS, their mentoring experience, especially
that happening in daily development activities, and their opinions
regarding formal and informal mentoring in OSS. See supplemen-
tary [84] for interview questions.

We performed and analyzed the interviews incrementally, that
is, after each interview we transcribed and analyzed the data. We
qualitatively analyzed the transcripts, following the open coding
protocol [30]. Two researchers performed the analysis by indepen-
dently coding the transcript resulting in codes regarding types of
mentoring and challenges, how and where mentoring was provided,
and recommendations for mentoring programs. All five participants
referred to situations where an OSS contributor provided detailed
technical guidance and support when reviewing technical contri-
butions, which helped them learn. These comments served as the
base for our definition of “implicit mentoring”. When doing the
analysis, each emerging code was compared with the existing codes
to determine if the emerging code was a discrete category or a
subset of an existing code. We carried out the whole procedure
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via continuous comparison throughout the coding sessions and
through negotiated agreement [23]. Researchers discussed the ra-
tionale for applying specific codes and reached a consensus during
the negotiated agreement process. Two authors agreed on the (1)
definition of conventional formal mentoring in OSS, (2) definition of
implicit mentoring in OSS, (3) the challenges of mentoring in OSS,
(4) the activities of formal mentoring, (5) activities of implicit men-
toring, (6) frequency of implicit mentoring, (7) benefits of implicit
mentoring.

Member checking survey I: To validate our understanding of
implicit mentoring that we attained through literature review and
formative interviews, we conducted a member checking survey.
We contacted each of our interview participants through email
and conducted a face-to-face survey through a teleconference tool
(Zoom). The survey (created in Qualtrics [70]) included three demo-
graphics questions, three questions about what constitutes implicit
mentoring (e.g., Please identify activities you consider a part of
mentoring), and where/when it occurs (e.g., Please identify where
implicit mentoring takes place). Participants could either fill out
their responses or verbalize their thoughts, a majority chose the
latter. See supplementary [84] for survey questions.

Large scale online survey: To acquire a more generalized per-
ception about implicit mentoring and further validate our definition,
we surveyed a larger population of OSS developers. Specifically, we
surveyed OSS developers who had contributed to Apache projects.
We selected Apache developers since Apache Software Foundation
is dedicated to promoting and enhancing mentorship in OSS. Addi-
tionally, Apache has explicit guidelines for mentors that contribu-
tors have to adhere to [24], making Apache developers a suitable
target for our survey.

Survey design: Our survey comprised 19 questions, a mix of
multiple-choice, Likert scale, and open-ended questions (see supple-
mentary for the survey questions [84]). The survey included demo-
graphics questions (Q1-Q5), validation questions of implicit men-
toring definitions (Q6, Q9), participant experiences/satisfactions
with it (Q7-Q8, Q13-Q14, Q18-Q19), and finally questions about
participants’ perceptions of the impact of implicit mentoring (Q10-
Q12, Q15-Q17). We conducted five pilot studies with graduate stu-
dents and professionals with OSS experience using snowball sam-
pling [31]. After each pilot study, we collected feedback and refined
the survey based on the feedback.

Participant selection: We focused on software developers who
had contributed to PRs in Apache projects. We decided to focus
on Apache for several reasons. First, Apache Software Foundation
oversees one of the most popular formal mentorship programs
(Google Summer of Code [78]), which would mean that the phi-
losophy of mentoring is instilled in Apache contributors. Second,
Apache projects have well-defined policies and a philosophy of
transparency where all discussions should be conducted in online
forums. This is essential for us to extract implicit mentoring from
archived communication. Finally, Apache projects are often studied
in scientific research, which allows our work to be placed in the con-
text of existing research [11, 29, 41]. Mannan et al. [55] curated a set
of 37 active Apache projects that used PR-comments as a discussion
channel. Therefore, we decided to use these projects as our “test
subject”. We used the GitHub API [58] to mine contributor emails
from these 37 projects. After removing emails of accounts that were

either deleted or private, we were left with 3,699 developer email
addresses in total.

Survey responses: We used Qualtrics [70] as a distribution plat-
form to deploy our survey. We emailed the survey to these 3,699
developers (following university-approved IRB protocol), and 70
emails bounced (giving 3,629 valid emails). The survey was open for
two weeks, during which we received 231 responses or a response
rate of 6.37%. These response rates are consistent with other studies
in software engineering [90].

Survey data analysis: In our survey, 219 out of 231 survey respon-
dents identified as men (94.81%), and the majority age group was
25 to 34 years old (44.59%). Most of our respondents had a master’s
degree (42.42%). 29.87% were senior contributors with over 20 years
of programming experience. In addition, over half (54.98%) of our
respondents had within 2 to 10 years of open-source experience.

We quantitatively analyzed the closed-ended questions to un-
derstand developers’ perceptions of the definition and impact of
implicit mentoring. We used a card sorting method [98] to conduct
a qualitative analysis of the responses to the open-ended questions
in our survey. Two researchers used a two-step card sorting process.
Each of them evaluated the responses (cards) and categorized them
according to their codes in the first step. Then these two researchers
met to discuss each code and categories. After this, the responses
were categorized into high-level groups. The researchers next in-
vestigated the categories to refine them and organize them into
more useful groups and themes.

3.2 Results
Our results show that in OSS both formal and informal mentoring
take place.

Formal mentoring happens where mentors and mentees are
formally connected either through scholarships or mentorship pro-
grams [4, 21, 82]. However, despite the formal programs having
guidance and financial support, it is difficult for mentees to figure
out how to seek guidance [4], or follow up with their mentors:
“There was no continuous progress of mentoring, we didn’t know how
to follow up on things” [P4] [4, 80, 81]. Sustaining thementor-mentee
relationship is further difficult because of: (a) diverging interests:
“...interests tend to diverge, you tend to look for new mentors, new
areas, and new people to serve” [P5] [4, 5], (b) limited resources: “if
the mentee leaves...a more likely outcome. Am I going to be left with
code to maintain that I might have been better for me to write in the
first place” [P5] [78], (c) difficulty in seeking guidance: “I really got
overwhelmed with all the information...I didn’t have much idea what
to ask for my mentor to guide me with” [P4] [4], and (d) cost-benefit
assessment: “It’s hard to assess...whether the return on investment is
going to be effective” [P2] [77].

Informal mentoring, perhaps because of the above challenges,
can be more effective than formal mentoring [39, 60]. Informal
mentoring is “interest-driven” when a mentor or mentee reaches
out to the other to seek/give guidance in a particular area. Informal
mentoring occurs frequently: “I have always had mentors, all infor-
mal mentors because I chose to learn from them” [P1] [39]. These
informal mentoring included cases where the mentee or mentor
reaches out to the other to ask for guidance.
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Table 2: Mentoring in OSS and its characteristics.

Provenance
Interview Related Work

Mentoring Suggestions P1, P3, P5 [5, 20, 86, 97]
Tasks Instructions P2, P3, P4, P5 [5, 20, 86, 97]

Mechanisms
to fix errors P1,P3, P5 [5, 9, 20, 97]

Mentoring Email, Slack, Skype, etc P1, P3, P4, P5 [5, 21, 97]
Channels Code review comments P1, P3, P4 [5, 9, 20]

In person/Remote P4, P5 [4, 21]

Implicit mentoring, a form of informal mentoring where train-
ing was “implicitly” provided as a part of contributors’ technical
activities, such as code review: “When somebody reviews a patch,
that gives a feedback to you, that’s a form of mentoring” [P1]. We
specifically define implicit mentoring as: “mentoring that occurs
in everyday development activities such as code reviews, where a
mentor provides an underlying explanation when providing sug-
gestions, instructions, or mechanisms to address errors”. As P2
described: “what you do in your day-to-day activities where you
mentor...teachable moments, where you explain why you are do-
ing certain things. So you’re essentially communicating knowledge
about the system that goes beyond the knowledge necessary to act on
the particular item that you have”. Such mentoring can be through
multiple channels: emails, PR-comments, in person meetings, or
through online communication tools. As P3 commented, “There are
going to be mentors who are more like code reviewers or the design
reviewers...mentorship that happens every single day”. A caveat, not
all code reviews include mentoring. Gunawardena et al. [34] found
that destructive criticism, where changes are requested without
explanations, is common and negatively impacted the receiving
developer and lowered their willingness to continue to work.

To validate our definition of implicit mentoring, we asked large
scale online survey participants to confirm if they agreed with
the above definition of implicit mentoring. The question had five
options ranging from: “Strongly agree” to “Strongly disagree”. We
considered a respondent to agree with the definition, if they selected
“Agree” or “Strongly agree”. A majority (214 out of 231, 92.64%)
agreed with our definition of implicit mentoring in OSS.

PR-comment(s) was a popular choice (selected 27.78% times)
as a channel for implicit mentoring, followed by issue-list com-
ments (18.62%), in-person conversation (15.32%), Email (15.17%), or
comments on Stack-Overflow posts (14.11%). Note, a participant
could select multiple channels. Respondents also identified other
channels (39 entries) such as, “Instant Messaging (Slack or Skype)”
(17 votes), “video meeting (Zoom)” (6 votes), and “Reddit”(2 votes).
One of the respondents mentioned, “Every single type of interaction
is an opportunity for mentoring” [ASF-150]. Therefore, mentoring
need not always be formal and can be done during contributors’
everyday activities, such as code review: “When somebody reviews a
patch, that gives a feedback to you, that’s a form of mentoring” [P1].
Table 2 presents the different aspects of mentoring our interviews
and literature survey identified, along with the channels where
mentors can “teach” in an OSS project.

Observation 1: Implicit mentoring occurs in OSS projects
as a part of everyday development activities through code
reviews (e.g., PR-comments).

Satisfaction with implicit mentoring: Perspectives of implicit
mentees: Analysis from our survey indicated that 183 out of 231
(79.22%) respondents confirmed they have received implicit men-
toring, and over 68.31% of these contributors claimed they have
been implicit mentees for at least two years or more. Among these
implicit mentees, 86.34% contributors were satisfied with their expe-
riences (“Extremely satisfied” 15.85%, “Satisfied” 49.18%, “Somewhat
satisfied” 21.31%).

Participants could give the reasons for their satisfaction rating
through an open-ended text; 46 participants provided did so. 24
of them mentioned that implicit mentoring helped them in their
professional development. One respondent mentioned, “Being an
implicit mentee allowed me to learn so much from talented folks, both
soft and technical skills” [ASF-94]. Six respondents addressed that
being an implicit mentee is a way to contribute to the community,
“Being an implicit mentee is satisfying to me because it makes you
feel like you belong to a caring community, and you do not have to
do it alone” [ASF-69]. Two respondents wrote about the reasons
for their dissatisfaction, including “public shame” [ASF-121] and
“communication skills/issues” [ASF-129].

Perspectives of implicit mentors:Analysis from our survey showed
that, 175 out of 231 (75.76%) respondents confirmed they have being
implicit mentors. 68.57% of them claimed to being implicit mentors
for over two years or more. Among these implicit mentors, 72.00%
were satisfied with their mentoring experiences. The reasons for
their satisfaction included, making a contribution to the project
(4), a way to improve their technical skills (5), and altruism (9).
For example, respondent mentioned: “I never get tired of seeing ‘the
lights come on’ when the mentee ‘gets it’” [ASF-140]. One respondent
reported the reason for their dissatisfaction: “I think it has helped
me grow substantially as an engineer, but it is frustrating that it is
not recognized or rewarded at all by my employer” [ASF-104].

Observation 2: A majority of respondents have either been
an implicit mentor or mentee, and are satisfied with their
experiences; mentee satisfaction (86.34%) and mentor satis-
faction (72.00%).

4 PREVALENCE AND IMPACT OF IMPLICIT
MENTORING IN OSS

We investigated the prevalence of implicit mentoring (RQ2) and
its impact (RQ3) on OSS contributors using a mixed-methods ap-
proach (see Figure 2). We began by developing an automated ma-
chine learning classifier to identify instances of implicit mentorship
in PR-comments. Following that, we investigated the impact of
implicit mentoring by analyzing the number of PRs submitted by
developers, the number of mentoring comments contributors re-
ceived, and developers’ contribution complexity. We also analyzed
the responses from the contributor survey (described in Section 3)
to gain an understanding of the benefits of implicit mentoring
from OSS contributors’ perspectives (Q10-Q12, Q15-Q17) and to
triangulate our findings from the mining analysis.
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Figure 2: Overview of research method for investigating
prevalence and impact of implicit mentoring.

4.1 Methodology
We start by selecting the 37 Apache projects from the list that
was curated by Mannan et al. [55], as explained in Section 3. This
dataset comprised 107,990 PRs with 836,729 PR-comments, logged
by 12,668 contributors. As our analysis required GitHub profile
data, we removed contributions of 42 user profiles whose GitHub
accounts were deleted at the time of data collection. Additionally,
we filtered out the PR-comments made by the PR author as we were
interested in mentoring comments made by others. These steps
resulted in 107,895 PRs with 511,314 PR-comments, and 12,626
contributors (out of which 4,644 contributors were PR-comment
authors). See supplementary [84] for further details about each
project in the dataset.

Manual Classification of Training Data: Our goal was to
identify implicit mentoring instances. Since manual classification
of 511, 314 PR-comments is not a practical option, we decided to
use machine learning. To train the machine learning classifier, we
manually classified a training set. We determined the size of this
training dataset by using a 95% confidence interval and a margin
of error of 5% [46] on the dataset, giving us a sample size of 384
PR-comments. We then did a random selection of 384 PR-comments
to create the training set.

Next, the first two authors manually labeled a subset of the PR-
comments in the training set with binary labels based on whether
the PR-comment included implicit mentoring (or not). When label-
ing, they followed the definition of implicit mentoring introduced
in Section 3: a PR-comment was labeled as implicit mentoring if
it included an “explanation” in addition to giving suggestions, in-
structions, or helping fix errors. Table 3 shows the rule book with
examples of both positive and negative cases of PR-comments in-
cluding implicit mentoring (See supplementary [84] for more). The
authors selected 20% from training dataset through random selec-
tion to calculate Inter-Rater Reliability (IRR) [36], which resulted in
a high agreement (90.03% Cohen Kappa [88]). The remaining 80%
of the training dataset was split evenly between the two authors
who individually classified the PR-comments.

Member Checking Survey II: To ensure the validity of our
manual classification, we contacted the five interviewees (Section
3) to validate our PR-comment labeling. We randomly selected eight
PR-comments (four implicit mentoring, four not implicit mentoring)
from the manually classified set of 384 PR-comments. The survey
was created in Qualtrics [70] and conducted face-to-face using
Zoom [3]. The survey presented the PR-comment and included
three response options: Mentoring, Not mentoring, and Not sure.
For the first two options, participants were asked to give a reason

Table 3: Classification rule book.

Mentoring PR-comment sample Mentoring
Action

YES “...run [tool] on the project before
creating a PR. You would have noticed [problem]...” Instruction

YES
“ I would still duplicate [action] like I did
in [certain PR] because it’s widely used in [tests].
Maybe this could be removed after [situation].”

Suggestion

YES
“ Would you mind just doing [action]
again to kick off [framework]? I think [framework]
is just not happy when it has a lot of loads.”

Mechanisms
to fix errors

NO "LGTM, Merging into master and release-[version number]" NA

NO
"This PR currently has merge conflicts, but [#PR]
is next in line, so you may want to wait till it is merged
before you fix these conflicts."

NA

NO
"This is not ready. Missing apache header
on the new file and there is no test. No idea what
this is fixing."

NA

for their response. As before, participants could either type in or
verbalize their answers (See supplementary [84] for further details
about Member Checking Survey II).

The member checking survey responses were 90% in agreement
with our classification (the remaining 10% was when participants
selected “Not Sure”). This suggests that our manual classification
is reliable. Moreover, their explanations in the open-ended replies
indicate that our rule book is reliable. For example, P3 explained
why a PR-comment was mentoring: “This is helpful feedback in
explaining that these changes are of low value” And P4 explained why
a PR-comment was not mentoring: “This is asking for information
[and not mentoring]”.

Training Machine Learning Classifier: Using the manually
classified training data, we trained five common supervised ma-
chine learning classifiers as they have been used in similar studies
for classifying discussion comments [10, 55]. They were: Random
Forest [61], Bernoulli [79], Support Vector Machine [35], KNeigh-
bors [65], and Decision tree [45]. Our training data consisted of the
comments in the PR. We used the usual text cleaning steps which
included using Porter’s stemming [66]. We eliminated all of the
terms from the standard stop word list in order to do suffix strip-
ping. To ensure the best performance, we applied hyper-parameter
adjustments from the Python Scikit learn library [64] to all five clas-
sifiers. By applying 𝑆𝑐𝑖𝑘𝑖𝑡𝐿𝑒𝑎𝑟𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉 , we found
the optimal parameters for each classifier. The models were trained
and evaluated using a 10-fold cross validation methodology. That
is, the data was randomly divided into 10 equal sets, and nine sets
were used for training and one for testing. We trained our model
using this method 10 times and report the mean scores.

Table 4 shows the precision, recall, F1, and AUC scores of the
five classifiers [67]. Random Forest Classifier (RFC) had the best
overall performance when considering both the F-measure (0.88) as
well as the AUC scores (0.94). Therefore, we used RFC for further
analysis. The final tuned parameters for our classifier RFC were
𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠=2800,𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠=𝑎𝑢𝑡𝑜 ,𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ=73,𝑚𝑖𝑛

_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡=20,𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 =2, and 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝=𝑇𝑟𝑢𝑒 .
Manual Analysis of Misclassification: Any systemic error

from misclassified PR-comments could be critical to its acceptance.
We investigated the confusion matrix [89] of our RFC model as
shown in Figure 3. We can infer from the confusion matrix that
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Table 4: Classification results per classifier.

Precision Recall F1 AUC
RandomForest 0.87 0.90 0.88 0.94
Support Vector Machine 0.84 0.84 0.84 0.91
NaiveBayes 0.81 0.79 0.78 0.90
DecisionTree 0.74 0.74 0.73 0.81
K-neighbors 0.72 0.62 0.57 0.71

Figure 3: Confusion Matrix.

neither class (Mentoring, Not-mentoring) is disproportionately im-
pacted by the RFC’s misclassifications.

Impact of Implicit Mentoring–data mining: We used three
different metrics to investigate the impact of implicit mentoring.

(i) Reduction in guidance: Prior research has identified several
benefits of mentoring. For example, mentees require less and less
guidance to accomplish their goals over time [72]. We wanted to
check if this holds true for implicit mentoring as well. As OSS con-
tributors are mostly voluntary and can have sporadic contributions,
we eschew using time as a metric but amount of contributions.
We started by sorting the PRs for each contributor within projects
based on the time when it was created and calculating the number
of mentoring comments received per PR. Next, we grouped the PRs
based on when the first mentoring comment was received. The
number of comments for a PR can vary depending on the com-
plexity of the PR, and outliers can influence the statistical analysis.
So we used a normalized value of the mentoring ratio (number of
implicit mentoring comments/number of comments) instead of the
number of mentoring comments. We used Pearson correlation [6]
test to check if the mentoring ratio decreased with each progressing
PR.

(ii) Contribution complexity: Both mentors and mentees benefit
in their technical knowledge and job performance gains as they
help each other [19, 76, 78]. “True mastery” is defined by Zhou
and Mockus [96] as an indicator of a developer’s ability to perform
complex tasks. We posit that with increased technical knowledge,
contributors will work on more central and complex parts of the
project. The complexity of contribution can be measured using (a)
code metrics and (b) centrality metrics.

(a) Code metrics such as, Lines Of Code (LOC) and McCabe
cyclomatic complexity [56] are commonly used to measure the
complexity of source code [92, 94]. We used Understand [87] to
compute LOC, McCabe cyclomatic complexity.

(b) Centrality metrics focus on the relationship between files
in a project. Ahmed et al. [1] mentioned that the more times a

file is referenced by other files, the more central and hence more
important that file is. We used degree centrality and eigenvector
centrality tomeasure the centrality of each file in the project. Degree
centrality quantifies the number of connections a file has with other
files [26]. Eigenvector centrality, on the other hand, calculates a
file’s relevance in a network and indicates the impact of a file on the
entire project [68].We used Understand [87] to compute the number
of references (in and out dependencies) for each file associated with
a PR. We used Igraph library [15] to compute the degree centrality
and eigenvector centrality from this data.

As the contribution complexity measures are per file, we have to
extract which files were changed for which PR (and by whom). To
do so, we first identified the commits made by a PR-author. Note, a
single PR can include multiple commits, and a single commit can
change multiple files. Next, we used Git to identify the authors’
names and files committed per PR. We analyzed total of 292,252
files in 11,551 PRs by 1,284 PR-authors.

(iii) Increase in productivity: Prior research has shown that men-
tors also benefit from mentoring by “continuous learning” by sup-
porting others, which results in increased productivity [7]. We
wanted to check if the same holds for implicit mentoring. We use
the number of PRs submitted by contributors as a proxy for pro-
ductivity.

Impact of implicit mentoring–contributor survey: Recall
that in Section 3 we deployed a survey to 231 Apache contributors.
A goal of this survey was to collect developers’ perceptions about
the impact of implicit mentoring, both as a mentor and a mentee.
The survey (Qualtrics) included closed-form questions listing a set
of benefits, which we created by reviewing the related work onmen-
toring. The related work was identified as described in Section 3.
The first two authors individually reviewed the related work about
mentoring and its benefits by analyzing the abstract and result sec-
tions, extracting the benefits listed. Through negotiated agreement
they finalized the list of benefits, which were then categorized into
four themes, using open card sorting [98]. Table 5 shows the po-
tential benefits for being OSS implicit mentors/mentees that were
included in the survey. We also included a “Text entry” option to
allow developers to provide additional perceived benefits, both per
theme as well as overall.

4.2 Results
Prevalence of implicitmentoring in OSS projects:We applied the
RFC classifier on our dataset to investigate the prevalence of implicit
mentoring in PR-comments. In our dataset, on average, a PR had
4.74 PR-comments (𝑠𝑑 = 8.81). However, not all comments in a PR
are mentoring, specifically implicit mentoring. So we checked what
percent of the PR-comments are actually implicit mentoring. Our
results show that, 27.41% of PRs had at least one implicit mentoring
comment. These comments were made by 2,943 out of 4,644 PR-
comment authors (63.37%). This shows that contributors routinely
participate in implicit mentoring. This finding is consistent with
our survey results as we present in Section 3.

Observation 3: Implicit mentoring occurs in 27.41% of PRs,
with a majority of PR-comment contributors having served
as implicit mentors.
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Table 5: Potential benefits for being an implicit mentee/mentor as identified from related work.

Mentee Mentor
Personal 1. Improving my technical expertise [28, 78] 1. Improving my technical expertise [28, 38, 85]
Growth 2. Improving my ability to transfer knowledge [93] 2. Developing confidence in leading/managing [73]

3. Improving the art of asking questions [22] 3. Improving my other *non-technical skills [38, 53, 73]
4. Improving my communication skills [22, 76]
5. Improving my other *non-technical skills [5, 76]

Career 1. Increasing my chances of promotion/higher salary [28] 1. Increasing my chances of promotion/higher salary [28]
Growth 2. Learning experiences beneficial to my job/organization [75] 2. Improving my reputation [28, 75]

3. Helping me grow my career [28, 78] 3. Improving my project’s reputation [75]
Social 1. Creating my collaboration network [27, 28, 76] 1. Identifying potential collaborators [2, 16, 28]
skills 2. Identifying people who are domain experts [28, 78] 2. Identifying other mentors [2, 16]

3. Identifying people who are programming experts [28, 78] 3. Identifying potential contributors that can lead to career opportunities [16, 28]
Altruism 1. Enjoying sharing experience [28, 76] 1. Receiving gratitude/appreciation from implicit mentees [2, 16, 28]

2. Building friendship [27, 28, 78] 2. Improving my ability to impart knowledge and experience [2, 28, 85]
3. Enjoying observing the growth of implicit mentees [2, 28]
4. Developing long-term friendship [16, 27, 28]

*non-technical skills: critical thinking, problem-solving, public speaking, professional writing, teamwork, digital literacy, leadership

Impact of Implicit Mentoring on Mentees: We analyzed the
impact on mentees using the first two metrics: (i) reduction in
guidance, and (ii) contribution complexity.

(i) Reduction in guidance: One of our goals was to test the hy-
pothesis (𝐻1) that there is a correlation between amount of con-
tributions spent on the project and amount of guidance (implicit
mentoring comments for contributors). We sorted contributions
(PRs) by time for each contributor instead of time as a metric due to
the fact that OSS contributors are mostly volunteers and can make
contributions irregularly. Pearson correlation test between mentor-
ing ratio (Number-mentoring-comments/ Number-comments) and
sorted contributions (PR) by time in the project indicates that as
time progresses, the mentoring ratio decreases (Pearson correlation
coefficient = −0.16, 𝑃 value < 0.001). It is possible that the number
of comments are reduced anyway in the project due to attrition of
contributors, which can be a confounding factor for our analysis. So
we checked the number of comments in the projects over time and
found that it increases over time (Pearson correlation coefficient
= 0.21, 𝑃 value < 0.001).

(ii) Contribution complexity: The following hypothesis is to eval-
uate the different complexity of code metrics (𝐻2) or centrality
metrics (𝐻3) submitted by implicit mentees and non-mentees in
the project. We split the PRs into two groups: the most complex
PRs submitted by contributors who at least received one mentoring
comment and the most complex PRs submitted by contributors
who did not receive mentoring comment in the project. Past works
have shown mentoring improves technical knowledge, so we used
PR complexity as a proxy for analysis [28, 78]. As explained in
Section 4.1, we measured complexity using two different code met-
rics. When measured using LOC, contributors who received at least
one implicit mentoring comment wrote more LOC as compared to
those who did not receive implicit mentoring comment (Welch’s
Two Sample t-test, 𝑡 =7.14, 𝑑 𝑓 = 1,022, 𝑃 value < 0.001). The effect
size was small (Cohen 𝑑 = 0.36) [12]. We see similar results for
cyclomatic complexity as well. Contributors who received at least
one implicit mentoring comment created code with higher cyclo-
matic complexity compared to those who did not receive implicit

mentoring comment (Welch’s Two Sample t-test, 𝑡 =8.06, 𝑑 𝑓 = 975,
𝑃 value < 0.001). The effect size was medium (Cohen 𝑑 = 0.41).

For testing Hypothesis (𝐻3), we used two centrality measures:
eigenvector centrality and degree centrality. Our results show that,
the eigenvector centrality of contributions from contributors who
received at least one implicit mentoring comment is higher com-
pared to those who did not receive implicit mentoring comment
(Welch’s Two Sample t-test, 𝑡 = 7.63, 𝑑 𝑓 = 1, 080, 𝑃 value < 0.001).
The effect size was medium (Cohen 𝑑 = 0.38). For degree centrality,
we see similar results, degree centrality of contribution from con-
tributors who received at least one implicit mentoring comment is
higher compared to those who did not receive implicit mentoring
comment (Welch’s Two Sample t-test, 𝑡 =5.69, 𝑑 𝑓 = 1,095, 𝑃 value
< 0.001) with a small effect size (Cohen 𝑑 = 0.29).

Findings from the survey corroborate these results. As Figure 4
(left pane) shows, the majority of participants believe that being an
implicit mentee aids in personal development, especially in terms
of “improving [their] technical skills” (98.31% respondents when
combining “Strongly agree” and “Agree” options).

The survey results also highlight additional benefits, those that
cannot be captured from mining repositories. Respondents men-
tioned that implicit mentoring helps develop technical skill as well
as non-technical skills such as, network building and communica-
tion. As one respondent mentioned, “Contributing to an unfamiliar
codebase provides useful experience operating outside of your comfort
zone and encourages intellectual humility. This translates to more
effective working relationships in a professional setting” [ASF-47].
Another benefit of implicit mentoring is the ability to share experi-
ences. “Being an implicit mentee is satisfying to me because it makes
you feel like you belong to a caring community, and you do not have
to do it alone” [ASF-69].

Observation 4: Mentees benefit from implicit mentorship in
terms of both technical and non-technical abilities, as well as
career advancement.

Impact of Implicit Mentoring on Mentors: An impact on men-
tors can be increased productivity for mentors because of their
implicit mentoring actions (Hypothesis 𝐻4). We analyzed the dif-
ferences between the number of PRs submitted by contributors
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Figure 4: Potential benefits for being: an implicit mentee (left pane) or a mentor (right pane) in OSS.

who were mentee-only (at least received one implicit mentoring
comment) and those who served both roles (at least received and
gave one implicit mentoring comment). Welch’s Two Sample t-test,
𝑡 = 11.16, 𝑑 𝑓 = 1,767, 𝑃 value < 0.001 (effect size using Cohens d =
0.44 (small)).

Hudson [38] mentioned that mentors can improve their own
professions by participating in mentorship programs. We also eval-
uated the different complexity of codemetrics and centralitymetrics
submitted by mentee only and contributors who have served both
mentee and mentor in the project. To test this hypothesis (𝐻5), we
split the PRs into two groups: the most complex PRs submitted
by contributors who were mentee-only and the most complex PRs
submitted by contributors who have served both roles. When con-
sidering the LOC as a metric for code complexity, Welch’s Two
Sample t-test (𝑡 =7.21, 𝑑 𝑓 = 422, 𝑃 value < 0.001) shows the differ-
ences between the two groups to be significant. The same holds
true for cyclomatic complexity (Welch’s Two Sample t-test, 𝑡 =7.08,
𝑑 𝑓 = 532, 𝑃 value < 0.001), eigenvector centrality (Welch’s Two
Sample t-test, 𝑡 =6.12, 𝑑 𝑓 = 657, 𝑃 value < 0.001) and degree central-
ity (Welch’s Two Sample t-test, 𝑡 =5.43, 𝑑 𝑓 = 491, 𝑃 value < 0.001).
The effect sizes are small to medium for all of metrics (LOC: Co-
hen 𝑑 = 0.52; cyclomatic complexity: Cohen 𝑑 = 0.51; eigenvector
centrality: Cohen 𝑑 = 0.44; degree centrality: Cohen 𝑑 = 0.39).

As shown in Figure 4, right pane shows the result, which val-
idates the quantitative results. Participants believed that being
a mentor helps them improve their technical expertise (81.58%
responded as “Strongly agree” or “Agree”) and managerial skills
(85.52% responded as “Strongly agree” or “Agree”). A reason can be
that mentors continuously improve themselves as they teach. “To
be a good mentor, I can make an effort and keep my ability improv-
ing” [ASF-152]. Participants also mentioned that mentoring has
an impact on personal growth “Being a mentor in OSS is all about
sharing your experience, regardless of background. It is also tremen-
dously self-rewarding as you gain popularity which helps career path
evolution” [ASF-94].

Table 6: Triangulation of the definition, channels, and label-
ing of code reviews with implicit mentoring.

Characteristics of implicit mentoring
Interview Member checking Survey Related work

Definition ✓ ✓ ✓ ✓
Channels ✓ ✓ ✓ ✓

Implicit mentoring PR-comments labeling
IRR Member checking

Classification ✓ ✓

The survey results also revealed that being an implicit mentor
can help in improving social skills and career growth. A majority
of survey respondents mentioned that they did implicit mentoring
because of altruism. “I tend to find that people who take advice
ultimately produce better results. If I can play a small part in that I
am extremely satisfied” [ASF-208].

Observation 5: Implicit mentoring helps mentors continu-
ously improve their technical and non-technical skills as a
result of assisting others.

5 DISCUSSION
5.1 Triangulation
Sections 3 and 4 alluded to a multiple-triangulation validation strat-
egy involving (1) triangulating the definition of implicit mentoring
via member checking with interview participants as well as a larger
survey, and (2) triangulating our labeling of PR-comments with a
short survey with interview participants. In this section, we bring
these different kinds of triangulation together, and summarize it in
Table 6.

As we are the first to define implicit mentoring, we triangulated
our definition through multiple ways. First, we sought for consis-
tency checking by comparing the open coding of the interview
data, first within the research team (negotiated agreement between
two researchers) and then via member checking with the interview

805



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zixuan Feng, Amreeta Chatterjee, Anita Sarma, Iftekhar Ahmed

participants. Consistency checking is a kind of “internal validity”
check to show if the authors’ understanding of implicit mentor-
ing matched that of (interview) participants. Next, we validated
our definition through a large scale survey of Apache contributors,
helping us get “external validity”.

We triangulated the components of the mentoring tasks and their
channels similarly. The literature review was the data source, and
then we triangulated the results through interviews and member
checking for internal validity, and then externally validated the
results through the contributor survey.

Finally, we triangulated whether we labeled PR-comments with
implicit mentoring correctly; we achieved internal consistency by
using Inter-Rater Reliability between the first and second author.
Then we got external validity by asking the interview participants
(Member Checking-II) to flag which PR-comments they consid-
ered to include implicit mentoring (Recall, we included eight PR-
comments, four of which were labeled to have contained implicit
mentoring).

5.2 Creating an Appreciative Community
Research has shown that traditional mentoring takes effort, which
reduces the technical productivity of mentors [5, 20]. Currently,
mentors from implicit mentoring are unacknowledged and that
causes mentors to disengage. Creating an appreciative community
where mentoring activities are visible and mentors are acknowl-
edged is an important consideration for OSS projects. As intervie-
wee P4 said: “there is no recognition, no kudos, no kind of positive
reinforcement for them to continue being a mentor. So, usually, they
are a mentor once and then they leave”.

OSS communities can experiment with various techniques for
“baking in” mentor appreciation into their projects.
1 The code of conduct for OSS can explicitly state that mentors
should be thanked for various efforts, including code reviews.

2 A lightweight mechanism to acknowledge mentors could be
creating an attribution tag, such as @mentor to allow contribu-
tors to formally acknowledge mentoring they received when
contributing.

3 OSS communities may utilize our technique to discover im-
plicit mentorship in their projects, which they can then use to
award “karma” points (or other non-code related activities). As
one survey respondent explained their motivation for implicit
mentoring: “Getting karma in the project. Typically becoming a
committer or PMC member” [ASF-83].

4 OSS communities that host projects, such as GitHub, may also
identify implicit mentors and include implicit mentoring into
contributor profile pages.

5 OSS projects can emphasize the extent to which the project re-
ceives (implicit) mentorship by automatically identifying these
instances. Previous research has identified markers that attract
newcomers to a project, with a friendly community ranking
high on the list [69].

5.3 Impact of Implicit Mentoring...
...on mentees: We examined the impact of implicit mentoring on
mentees by investigating the relation between contribution com-
plexity and implicit mentoring. Furthermore, we also surveyed the

people who had been implicitly mentored to validate our findings.
A majority of participants perceived implicit mentoring to be help-
ful in developing their technical and non-technical skills, as well
as in their career growth. The survey results show that implicit
mentoring helps mentees create their collaboration network and
identify the domain experts. Social networks are important to cre-
ate a sense of belonging, Bosu and Carver [8] found that informal
discussions that occur through code review can help create friend-
ships. It would be interesting to investigate how these networks are
created and how they evolve over time, whether positions in these
social networks correlate with reputation in the community and/or
career growth, and whether these networks reflect organizational
hierarchies (e.g., the Apache Software Foundation roles as PMC,
chair, VP, board member).

...on mentors: was seen in improvement in their technical and
non technical skills. Amajority of mentors took onmentoring for its
altruistic purposes, but a recurring problem was mentor “burnout”
and work overload, making it difficult to retain mentors [5, 20, 86].
Since, by its very nature, implicit mentoring constitutes brief, topi-
cal interactions, it is possible that if OSS projects reward implicit
mentoring, more mentors will participate. Many of mentoring ben-
efits identified in formal mentorship programs were also seen as
benefits in implicit mentoring, thus, acknowledging implicit men-
toring, which requires less effort that dedicated mentor-mentee
relationship, can help make mentoring sustainable in OSS projects.
Mentor networks of individuals created by bringing together indi-
viduals who share topical interests, can help mentors learn from
each other and identify potential collaborators.

...on projects: As one of the survey respondents addressed, “Im-
plicit mentoring generates benefits for the mentee, mentor, and their
organization” [ASF-205], having a mentor for purposeful practice is
essential in software development efforts [37]. We classified the 85
open-ended answers to the question “why did you choose to be an
implicit mentor?” into four groups. 42% of contributors expressed a
desire to give back to the community and project, and 34% felt that
mentoring is beneficial to the project’s health, including quality,
maintenance, and onboarding of newcomers. 13% of participants
said they love assisting others, and 11% believe implicit mentoring
occurs spontaneously. As such, more research would help answer
questions about how implicit mentoring affects project quality, how
implicit mentoring effects attracting newcomers, and how implicit
mentoring affects keeping contributors to OSS projects.

6 THREATS TO VALIDITY
Our study, like any other empirical research, is not without its risks.
We have taken all reasonable steps to mitigate the effect of these
potential threats, which we will describe in detail below.

Construct validity: It is possible that some of the analyzed
projects may have used other communication channels such as JIRA
that we did not detect from the PR analysis. However, respondents
to the survey confirmed that PR is the most popular channel they
engaged in implicit mentoring, which reduces the risk of losing
information due to only focusing on PR.

There is always a threat to the construct validity if participants
misunderstand our survey questions. To mitigate this threat, we
conducted pilot studies with developers with different experience
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levels from OSS community. We updated the survey based on the
feedback of these pilot studies.

Internal validity: The manual analysis applied while labeling
PR-comments could have introduced unintentional bias. To address
this concern, two researchers individually labeled a significant por-
tion of the data. We established a high Inter-Rater Reliability of 90%,
which, according to McHugh [57], is considered as a substantial
level of agreement. We then took samples from manually catego-
rized data and used a member checking survey to validate our
classifications. In addition, the definition and channels of implicit
mentoring that had been triangulated with related works, member
checking surveys, and online surveys. We discuss our methods in
depth in the methodology of Section 3 and 4. We believe these steps
have minimized this threat.

The set of metrics used to measure contributions complexity are
widely used in literature. However, other metrics could have been
used for this purpose. Thus, our evaluation is not exhaustive, but
we believe that the metrics we used provide a fair assessment of
contributions’ complexity.

External validity: We only covered PRs on Github Apache
projects, but we obtained large samples. The dataset used for the
study consisted of only Apache projects. It is possible that the
conclusions from our analysis may not apply to other OSS projects.
Similarly, we surveyed developers only from the Apache Software
Foundation. The characteristics of these developers may not be
representative of all developers in other OSS projects.

7 CONCLUSION
In this work, we define the concept of implicit mentoring, where a
mentor provides mentoring in the form of suggestions, instructions,
or mechanisms during everyday development activities such as
code reviews. Through an empirical investigation, we also showed
a widespread prevalence of implicit mentoring.

Our results highlighted that implicit mentoring is beneficial for
both the mentor and mentee in terms of learning, engagement,
and social network growth. However, given that a large amount
of implicit mentoring happens on a regular basis, it mostly goes
unnoticed and unacknowledged. The research community needs
to focus on developing mechanisms that can facilitate creating an
appreciative community where mentoring activities are visible, and
mentors are acknowledged to ensure sustained mentoring.

The results reported in this paper lay the foundation for our
future work. In the future, we plan to investigate how implicit
mentoring impacts facets such as newcomer onboarding and par-
ticipation diversity in OSS. We envision that our work will help to
elevate the long-standing problem of lack of diversity in OSS.

The research artifacts for this study are available publicly at the
companion website [84].
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