
On the Relationship between Design Discussions and Design
Quality: A Case Study of Apache Projects

Umme Ayda Mannan
Oregon State University
Corvallis, Oregon, USA

mannanu@oregonstate.edu

Iftekhar Ahmed
University of California, Irvine

Irvine, California, USA
iftekha@uci.edu

Carlos Jensen
Oregon State University
Corvallis, Oregon, USA

Carlos.Jensen@oregonstate.edu

Anita Sarma
Oregon State University
Corvallis, Oregon, USA

anita.sarma@oregonstate.edu

ABSTRACT
Open design discussion is a primary mechanism through which
open source projects debate, make and document design decisions.
However, there are open questions regarding how design discus-
sions are conducted and what effect they have on the design quality
of projects. Recent work has begun to investigate design discus-
sions, but has thus far focused on a single communication channel,
whereas many projects use multiple channels. In this study, we ex-
amine 37Apache projects and their design discussions, the project’s
design quality evolution, and the relationship between design dis-
cussion and design quality. A mixed method empirical analysis
(data mining and a survey of 130 developers) shows that: I) 89.51%
of all design discussions occur in project mailing list, II) both core
and non-core developers participate in design discussions, but core
developers implement more design related changes (67.06%), and
III) the correlation between design discussions and design quality is
small. We conclude the paper with several observations that form
the foundation for future research and development.

CCS CONCEPTS
• Software and its engineering→ Software development pro-
cessmanagement;Maintaining software;Designing software.

KEYWORDS
Design discussion, Design quality, Code smells, Empirical Analysis

ACM Reference Format:
UmmeAydaMannan, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020.
On the Relationship betweenDesignDiscussions andDesignQuality: ACase
Study of Apache Projects. In Proceedings of the 28th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3368089.3409707

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409707

1 INTRODUCTION
Good design is key to ensuring the performance, robustness, and
maintainability of software [75]. To be able to create a “high quality”
product, developers need to not only be aware of the design of the
system but also about the underlying design decisions. If develop-
ers are unaware of the design decisions, they can make changes
contrary to what was intended, setting others up for clashes, which
can degrade the overall design quality of the system [74].

Design decisions are often decided and shared informally among
developers of a project [40], making it a key challenge to document
and share design decisions [40]. This becomes a bigger challenge
for open source software (OSS) for several reasons. First, these
projects are distributed, involving 100’s of developers who are
geographically or temporally separated. This means that purpose-
ful discussions are the only way for developers to coordinate and
build together. Second, because of their often volunteer nature, OSS
projects rarely produce updated design documents and, in some
cases, lack formal design documentation altogether [19]. In such
cases, design discussions are the only form of design documenta-
tion.

Recent work has started to investigate how OSS developers dis-
cuss the design and how they find these design discussions later.
For example, Brunet et al. [19] and Viviani et al. [75, 76] examined
how design discussions are embedded in pull request comments
and how it can be difficult for developers to piece together these
discussions. Researchers have also developed techniques for de-
tecting design discussions from a (single) communication channel
using Machine Learning (ML) techniques [19, 45, 75, 76].

However, we still have gaps in our understanding of how de-
sign discussions are conducted in OSS projects—What channels
are used? Who participates in these discussions? Who implements
design-related changes? Answers to these questions are especially
pertinent for OSS projects since they are known to use different
channels (project mailing list, issue tracking systems, pull requests,
code, etc. [19]) to discuss their work. Design discussions fragmented
across channels can make it difficult for developers to retrieve and
reconcile the scattered pieces of design discussions. This was indeed
the case as one of the respondents in our survey of 130 software de-
velopers mentioned “discussions are fragmented between several[sic]
systems and not structured for easy searching”.

543

https://doi.org/10.1145/3368089.3409707
https://doi.org/10.1145/3368089.3409707
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3368089.3409707&domain=pdf&date_stamp=2020-11-08

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Umme Ayda Mannan, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma

Even if developers are able to find the design discussions, it is
yet unknown to what extent design discussions in OSS relate to
the design quality of the project. Without such knowledge, OSS
projects might be discussing design under incorrect assumptions (of
how design decisions can be retrieved and used), and researchers
might miss opportunities for improving state of the art. To the
best of our knowledge, no prior work has investigated how design
discussions are fragmented across multiple OSS channels and the
relation between design discussions and design quality.

In this work, we seek to understand two broad aspects of design
discussions in OSS projects:
RQ1: Howare design related discussion conducted inOSS projects?
RQ2: What is the relationship between design discussions and

design quality in OSS projects?
To answer our research questions, we performed amixed-method

empirical study of 37 Apache projects. These projects use multi-
ple communication channels (according to their official documen-
tation), making them ideal candidates for our study. We opted
to investigate Apache projects because these projects have well-
documented discussion procedures. Apache projects initiate discus-
sions on mailing list, and once decided on the high-level design, the
discussion moves to issue tracking system, and finally, the code is
submitted using a pull request, where another round of discussion
may occur [30].

We started by extracting design discussions from multiple chan-
nels (developermailing list, issue tracking systems–Jira and Bugzilla,
and pull requests). This gave us a corpus of 1, 661, 922 distinct dis-
cussions. We then developed an ML classifier that can identify
design discussions from either of the four aforementioned commu-
nication channels. Applying the classifier on our corpus, we found
that overall 9.34% of all discussions touch on some design aspect.
We then validated our findings via a survey of 130 developers from
the Apache projects.

Finally, we evaluated the association of design discussions with
design quality. Design quality could mean different things to differ-
ent people. For example, it could mean poor feature selection, terri-
ble UX design, or bad architecture design. While trying to identify a
suitable metric for measuring design quality, researchers have inves-
tigated different metrics such as Coupling Between Object (CBO),
COupling Factor (COF), Weighted Method per Class (WMC), and
code smells [13, 20, 24, 44, 47, 56]. We opted to use the occurrence
of code smell as a proxy for (poor) software design quality since a
large number of studies have used and validated code smells for the
aforementioned purpose [12, 13, 24, 25, 44, 46, 47, 52, 52, 56, 69, 70].

Our paper makes the following contributions:
• We present a first study investigating the relationship be-
tween design discussions and design quality.

• We present the results of a survey of 130 software developers
examining the difficulties that developers face in locating
and acting on design discussions in OSS projects.

• Based on our results, we outline implications for developers
and researchers, make suggestions for improving existing
tools and guidelines to better support design discussion.

The paper is structured as follows Section 2 provides a review
of prior research efforts. In Section 3, we present our methodology,
the demographics of our corpus, approach of mining discussions,

machine learning classifier to classify discussions, data collection
process, and surveying developers for answering our intended re-
search questions. In Section 4, we present our findings. Section 5
discusses the results and outlines implications for developers and
researchers. Section 7 concludes with a summary of the key findings
and future work.

2 RELATEDWORK
In the context of software engineering, design is defined both as
a process [33] and an artifact [62]. Researchers have investigated
both aspects. While investigating the process aspect, researchers
looked into how and where developers discuss the design. Previous
studies [19, 67] show that in OSS projects design discussions takes
place in platforms like email communications, issue trackers, pull
request etc. Brunet et al. [19] found that 25% of the discussions are
about design. Though many channels are available for discussion,
all prior studies focused on analyzing discussions in only one chan-
nel [19, 75, 76]. Since many channels are available, discussions can
be fragmented, and an in-depth analysis involving all channels is
required to gather a better understanding of how and when design
discussions happen. To the best of our knowledge, ours is the first
study analyzing multiple communication channels in this context.

Researchers have also looked into the artifact aspect of design.
Though OSS projects share most of the information in written
form, it is very often to find an updated design document in a
project’s archive. Brunet et al. [19] examined 90 popular projects
from GitHub and found that 68% of these did not have any kind of
design documents. Cherubini et al. found that developers mostly
convey design decisions through temporary drawings [21]. Soria
et al. [68] found that design knowledge generated during verbal
meetings was not captured in the project archive. Researchers also
found that design decisions are lost over time [21].

Since design in OSS is not well documented, recovering it be-
comes difficult with time. To help recover design decisions, re-
searchers have proposed many techniques. One technique is re-
covering design by reverse engineering [22] or inferring structural
designs from code and logs [53]. Antoniol et al. [14] showed that
design could also be recovered by tracing links between code and
documentation. Another study recovered architectural design from
source code with commits and issues [66].

Researchers have also applied ML based techniques to retrieve
design discussions. Brunet et al. applied a machine learning classi-
fier to automatically label design related discussions [19]. Viviani
et al. [75] applied a classifier to automatically locate paragraphs in
pull request discussions related to design. Mahadi et al. [45] trained
a classifier on the dataset created by Brunet et al. [19] and tested it
on the dataset of Viviani et al. [75]. However, both of the dataset
include discussions only from pull requests. Our study builds a
machine learning classifier that automatically labels design-related
discussion from different communication channels (project’s mail-
ing lists, issue tracking systems, and pull requests).

Different ways of measuring design quality have been investi-
gated. Many researchers [12, 13, 24, 25, 44, 46, 47, 52, 56, 69, 70]
have used code smells [32] to quantify design quality. Code smells
are symptoms of poor design and implementation choices [32]. Ini-
tially, it was introduced to identify potential maintainability issues

544

On the Relationship between Design Discussions and DesignQuality ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

in the software system; however, later on, it has been associated
with bugs [41, 44, 55], and fault-proneness [34, 79]. Researchers
have also investigated how design quality evolves over time and
found that small changes accumulating over time cause the design
drift [74]. Ahmed et al. [13] found that software design quality,
measured using code smell, gets worse over time. Researchers have
also studied the relationship between project activities and design
quality [52, 59] and found that code reviews have a significant influ-
ence on reducing code smells. However, no studies are investigating
the relationship between design discussions and design quality. Our
study takes the first step towards filling this gap in research.

3 METHODOLOGY
The goal of this study is to understand how design discussions
take place in OSS projects and the relationship between design
discussions and design quality. In the following subsections we
describe the pipeline we followed to collect, process and analyze
the data.

3.1 Data Collection
3.1.1 Project Selection. Our overarching goal is to identify design
discussions in OSS projects and investigate their relationship with
design quality. We start by selecting 37 Apache projects written
in Java. We selected Apache projects because they use multiple
communication channels (mailing list, issue tracking system, pull
request, etc.) and have specific instructions for using these channels.
Selecting random projects from GitHub without a well-documented
discussion procedure would make it difficult to ensure that we have
identified all communication channels. Since our goal was to under-
stand how discussions are scattered across all channels, identifying
all channels is of the utmost importance. We selected projects writ-
ten in Java since it is one of the most popular programming lan-
guages [73], and there is more design quality (code smell) detection
tools available for Java than other languages [28]. We downloaded
the git repositories for these projects to collect various information
such as code smell, project duration, developer information etc.
Table 1 provides a summary of our selected projects.

Table 1: Project Statistics

Dimension Max Min Average Median
Line count 18,474,542 82,303 1,770,088.82 1,074,659.50
Duration
(weeks) 1,063 214 606 560.14

Developers 1,852 21 226.44 105.50
Total
Commits 80,277 3,561 22,688.05 18,083.50

Total
Discussions 117,995 594 86,599.33 38,195

3.1.2 Discussion Collection. For these 37Apache projects, we found
the list of communication channels used by them. From the devel-
oper mailing list, we collected 1, 437, 753 emails as discussions. We
also collected discussions from Bugzilla (67027), Jira (134, 312), and

pull requests(22, 362). The entire thread of interactions (emails-
grouped by the subject header, comments grouped by issue-ID) was
the analysis unit and considered a (single) discussion. In total, our
initial data set contained 1, 661, 922 of such discussions.

3.1.3 Unit of Measure Selection. To investigate how design discus-
sions correlate with design quality over time, we could use different
ways of partitioning time. Some researchers [36, 37] have used re-
leases as the unit of time; others have used individual commits, or
discrete-time units (years, months, weeks, days) [13, 48]. Individual
commits are the only “level” measure but would be too fine-grained
for our purpose. Thus, similar to Ahmed et al. [13], we selected the
week as our unit of measure because it gives us enough detailed
insight into the evolution of projects. We then checked the distri-
bution of commits across the projects’ history and found that the
majority (90%) of the projects had an active history of 560 weeks
or less. We cut off our analysis at 560 weeks to prevent extremely
long-lived projects from skewing the results.

3.2 Building the Discussion Classifier
To answer our research questions, we need to separate design dis-
cussions from other discussions. As manual classification is not a
practical option to classify 1, 661, 922 discussions, we use machine
learning techniques. We followed the protocol of Brunet et al. [19]
with some improvisations suggested by Mahadi et al. [45].

3.2.1 Step 1: Manual Classification of Sample Data. To ensure that
our manually labeled dataset contained discussions from all four
channels, we took the following steps: (1)an initial random selec-
tion of 500 discussions from each channel so that each channel
is “represented”, and (2) an additional random selection of 3, 000
discussions agnostic of the channel type. In table 2, column three
represents the total number of discussions taken from each channel
after these two steps. This resulted in a total of 5, 000 discussions,
which were used to build and evaluate our ML classifier.

Next, two of the authors manually labeled 2, 000 discussions
independently (40% of the corpus). We did not discuss any spe-
cific rules except for focusing on the structural design aspects of
the code to classify the discussions. This was to avoid bias in our
independent classification of the discussions. Also, our initial man-
ual investigation of the discussions found that keywords used in
design-related discussions are diverse. As a result, only focusing on
keywords would not capture all the design discussions. Therefore,
instead of focusing on keywords, we focus on the semantics in
the discussions. While reading the discussion, the researchers paid
attention to discussion regarding “structural design”, “code archi-
tecture”, anything regarding the “restructuring of code”, and such
kinds of high-level topics. To remove subjectivity, two researchers
labeled each discussion either as a design or non-design discussion.
Then we calculated the inter-rater reliability using Cohen’s Kappa
and found a Kappa value of 0.88. Cohen’s kappa is a statistic that
assesses the degree of agreement between the codes assigned by
two researchers working independently on the same sample [54].
Values of Cohen’s kappa fall between 0 and 1, where 0 indicates
poor agreement and 1 indicates perfect agreement. According to
the thresholds proposed by Landis and Koch [43], kappa value of
0.88 indicates an almost perfect agreement between the researchers.

545

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Umme Ayda Mannan, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma

Once the agreement was reached, one author manually classified
the rest of the sample data. In our final sampled data, 998 (20%) dis-
cussions are design related and 4, 002 (80%) are non-design related
discussions. Table 2 shows the distribution of manually classified
sample discussions across channels.

Table 2: Distribution of manually classified sample across
different Channels.

Channel Total
Discussion

Total
Sample
Discussion

of
Design
Discussion

of
Non-
Design
Discussion

Mailing List 1,437,753 3,000 600 2,400
Bugzilla 67,027 647 129 518
JIRA 134,312 797 159 638
Pull Request 22,830 556 110 446
Total 1,661,922 5,000 998 4,002

3.2.2 Step 2: Natural Language Pre-processing. We followed some
pre-processing steps to clean the data before applying a machine
learning classifier and used the NLTK library [7] for this.We remove
stop words and applied Lemmatization to normalize the data. We
added some domain-specific words in the stop-word list that are
not part of the predefined English stop words list [8]. For example,
we added name of the days in week, name of the months, special
character sequence such as “»” or “#” etc. The full list of stop words
can be found in our companion website [77]. Then we use lower-
case letter conversion. After removing stop words and doing the
letter-case conversion, we used TF–IDF for vectorizing the natural
language words into numerical vectors. More specifically, we used
TfidfVectorizer [11] provided by Scikit-Learn.

3.2.3 Step 3: Machine Learning Classifier. Using the manually clas-
sified corpus, we train four different machine learning classifiers,
a Multinomial Naive Bayes (MNB) [6], a Decision Tree(DT) [3],
a Support Vector Machine (SVM) [10] and a Logistic Regression
(LR) [5]. We use Python Scikit-learn library [65] to implement the
classifiers. We used 10-fold cross validation to train and evaluate
the classifiers [38]. This validation approach randomly divide the
manually classified data set into 10 groups of equal size. The first
group is treated as a validation set, and the classifier is fit on the
remaining 9 groups. The mean of the 10 executions is used as an
estimation of classifier’s accuracy. 10-fold cross validation has been
recommended in the field of applied machine learning [42].

After 10-fold cross validation, we compared the classifiers us-
ing the Area Under the Receiver Operating Characteristic Curve
(AUC) [26]. AUC returns a scores from 0 to 1 to represent prediction
performance of a classifier. A classifier with an AUC score higher
than 0.5 indicates that it is performing better than random chance.
An AUC score above 0.7 is often considered to have adequate clas-
sification performance [63]. We choose to use AUC instead of F1-
score for comparing classifier performances for several reasons.
First, it is independent of prior probabilities [17]. Second, AUC is
not biased by the size of test data. Finally, AUC provides a “broader”

view of the performance of the classifier since both sensitivity and
specificity for all threshold levels are incorporated in calculating
AUC [61].

Table 3: AUC for classifiers

Classifier name AUC
Decision Tree 0.86
Logistic Regression 0.77
SVM 0.74
Multinomial Naive Bayes 0.50

Table 3 shows that the Decision Tree achieved the highest AUC
score of 0.86 compare to other classifiers. We, therefore, used the
Decision Tree classifier to label the remaining discussions automat-
ically. We performed hyper-parameter optimization using random-
ized search [16] for all four classifiers before selecting the decision
tree. Randomized search sets up a grid of hyper-parameter values
and selects random combinations to train the model and score on
the validation data. The number of search iterations is set based on
time/resources; in our case, it was 10. We search for the optimal
parameter settings using the Scikit-Learn RandomizedSearchCV
function. Our hyper-parameter grid for the best classifier (Deci-
sion Tree) includes “max_depth”,“max_features”, “min_samples leaf”
and “criterion”. The final tuned decision tree parameters for our
classifier were “min_samples_leaf: 5, max_depth:3, max_features:
5, criterion: gini”.

3.3 Developer Categorization
To answer our research questions, we needed to identify developers’
status in the project and their participation in the discussion. We
used the number of commits contributed by individual contributors
in the code base as the criterion to classify a developer as core or
non-core of the project [13, 51].

In order to calculate the status of developers, we start by collect-
ing developer names and corresponding email addresses from the
project repository. After doing so, we noticed some miss matches.
For example, multiple slightly different names with the same email
addresses and same name with different email addresses. In our
data set, 45% of the developer names had this issue. To identify
the developers’ unique list, we did a two-way matching of name
and email address. First, we identified all names attached to each
email address and all email addresses attached to a name. Then we
identify all unique pairs of names and email addresses. We were
able to match 98.5% of email addresses with names.

Next, we categorized developers into core and non-core groups
according to their code contributions in the projects. Open source
contribution follows a power law, where 20% of contributors are
responsible for 80% of the contributions [51]. We follow the same
rule to identify the core and non-core developers. We consider a
developer as core if the developer is among the top 20% of developers
in that project (calculated by the number of commits authored).
Otherwise, the developer is non-core.

546

On the Relationship between Design Discussions and DesignQuality ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

3.4 Code Smell Collection
To examine the relationship between design discussions and design
quality, we collected code smell (an indicator of design quality) for
the 37 selected projects.

3.4.1 Code Smell Detection Tool Selection. Weused inFusion [2, 57],
a commercial tool to identify code smells. We selected inFusion for
several reasons: First, inFusion detects a wide range (20) of code
smells [57]. As a commercial tool, inFusion is no longer available
for download. However, there is an open source version of the tool
called iPlasma [1], which is available. It uses static code metrics
to identify design related issues. Details of the metrics along with
the definition of the code smells are provided in the companion
website [77]. Second, a previous study by Ahmed et al. [13] showed
that inFusion has a high precision of 0.84, recall of 1.00, and an
F-measure of 0.91. Also, inFusion scales well to large codebases.
Finally, many other studies [27, 29, 35] used inFusion as their code
smell detection tool.

3.4.2 Measuring Code Smells. For each of the 37 projects, we col-
lected code smells by running inFusion on their codebase. First, we
collected the number of code smells in each code smell category
per week. Then we add all smells across all categories to collect
total code smells for each project.

3.5 Data Analysis
We calculated the number of design discussions and code smells
for each project over 560 weeks. To compare these two time series,
first, we normalized the data since the number of discussions and
code smells will vary according to the size of the development
team and project. There are many ways of normalization, and the
most commonly used one is dividing the data by the lines of code.
However, in our case, dividing the number of discussions by total
lines of code does not necessarily give us a meaningful measure.
Instead, we normalized both the number of design discussions per
week and the number of code smells per week using the feature
scaling [18], which gives a score between 0 and 1 (Equation 1).

Rescaled value = x −min(x)

max(x) −min(x)
(1)

Where x = each data point. min(x) = The minimum among all the
data points. max(x) = The maximum among all the data points.

Our goal is to identify any correlation between two time series
data, which are the number of design discussions per week and the
number of code smells per week. We calculate the cross-correlation
between design discussions per week and count of code smells
per week individually for each project for this purpose [50]. As
the first step of time series analysis, we start by checking if there
are any visible trends. If a time series exhibits a visible trend, we
need to remove the trend before further analysis. This is called the
detrending.We applied the first differencingmethod to detrend both
time series [50], and after that, we calculate the cross-correlation.

3.6 Survey
To validate our findings frommining archival data, we conducted an
online survey of software developers working in Apache projects.

This section describes the survey design, participant selection cri-
teria, pilot testing, data collection, and data analysis.

3.6.1 Survey Design. We designed an online survey to identify the
issues associated with accessing and implementing design-related
discussions using Qualtrics survey system [9]. We gathered demo-
graphic information to understand the respondents’ backgrounds
(e.g., number of years as a professional developer, number of years
contributing to open source project). Next, we asked them how they
conduct design-related discussions in the OSS project and what are
the problems they faced while finding design-related discussions.
We asked the respondents to rate their difficulty level of finding
design discussions in each communication channel using a Likert
scale where the options are Extremely easy, Somewhat easy, Neither
easy nor difficult, Somewhat difficult, Extremely difficult. We used
multiple choice for some of the questions. A text box option was
provided for respondents in the multiple choice questions in case
they wanted to share the reason behind their choice. The survey
instrument is available in the companion website [77].

3.6.2 Participant Selection. For our survey, we recruited software
developers from the 37 Apache projects we analyzed. To build our
participants list, we created the list of unique email addresses of
individuals from the version control system. In total, we had 7, 682
unique email addresses on our list. We selected a random sample
of 2, 000 for potential participants from the list and sent a targeted
email inviting them to our survey.

3.6.3 Pilot Survey. To help ensure the survey’s validity, we asked
Computer Science professors and graduate students (Two profes-
sors and 5 Ph.D. students) with experience in OSS and survey design
to review the survey. To make sure that the questions were clear
and complete, we conducted several iterations of the survey and
rephrased some questions according to their feedback. We also fo-
cused on the time limit to ensure that the participants could finish
it under 10 minutes. The survey was anonymous, but at the end of
the survey, we gave the participants a choice to receive a summary
of the study through email.

3.6.4 Data Collection. After sending an invitation email to 2, 000
potential participants, 1, 980 invites were delivered via Qualtrics [9].
20 failed to deliver likely due to invalid email addresses. 946 of those
emails bounced and we received 22 automatic reply notifying the
respondent’s absence. Our final count of potential participants were
1, 012. According to the Software Engineering Institute’s guidelines
for designing an effective survey [39], “When the population is a
manageable size and can be enumerated, simple random sampling is
the most straightforward approach”. This is the case for our study
with a population of 7, 682 software developers from the selected
Apache projects.

We received 110 responses from 1, 012 email requests during
first 10 days. Then we sent a reminder email. After the reminder,
we received 30 more responses in the next 10 days. We sent out
a second reminder email 10 days after the first reminder and got
12 additional responses. In total, we received 152 responses from
1, 012 email requests (15.01% response rate). Previous studies in Soft-
ware Engineering field have have reported response rates between
5.7% [60] and 7.9% [49]. We discarded 22 partial responses, which
left us with 130 responses (12.9% response rate after excluding the

547

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Umme Ayda Mannan, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma

partial responses). Our respondents’ software development experi-
ence varies from 3 years to more than 20 years, with an average of
15.21 years.

3.6.5 Data Analysis. We collected the ratings our respondents pro-
vided for each question, converted these ratings to Likert scores
from 1 (Extremely difficult) to 5 (Extremely easy) and computed
the average Likert score. We also extracted comments and texts
from the “other” fields by the survey respondents explaining the
reasons behind their choices. To further analyze the results, we
applied Scott-Knott Effect Size Difference (ESD) test [71] to group
the difficulty level of finding design discussion in each channel
into statistically distinct ranks according to their Likert scores. Tan-
tithamthavorn et al. [71] proposed ESD as it does not require the
data to be normally distributed. ESD leverages hierarchical cluster-
ing to partition the set of treatment means (in our case: means of
Likert scores) into statistically distinct groups with non-negligible
effect sizes.

4 RESULTS
We structure our study findings based on our research questions.

4.1 Design Discussions in OSS Projects (RQ1)
As a first step, we investigate how often andwhere OSS contributors
discuss design related matters:
RQ 1.1: What is the prevalence of design related discussion and which
channels are used for such discussions?

To answer this research question, we collected all discussions
from developermailing list, issue tracking system (JIRA and Bugzilla)
and pull requests. We built a machine learning classifier (discussed
in section 3.2) that labeled 155, 175 (9.34%) discussions as design
related out of 1, 661, 922 total discussions.

Some example of design discussions labeled by the classifier are:
• “I do not think this is by design. I think it is so today because. . .
UI should be able to send this every time a call is made - please
open a JIRA for this”.

• “I’m really confused. I have tried looking at the code, but I
got lost in the tangle of Contexts, Containers, Wrapper, Valves,
Dispatchers...and I gave up. BTW, Craig, is there a design doc-
ument anywhere for Catalina?”.

• “did you guys ever come up with any sort of design document?
Looking back at the last chatter, we were still in a localfs WAL
capability”.

Next, we analyze where these design discussions take place by
grouping discussion by communication channel. Table 4 shows the
percentage of design discussions distributed across the three types
of channels.

Dev-mailing lists contain the vast majority of design related dis-
cussions, accounting for 89.51% of the total design discussions from
all channels, with 9.34% of the total discussions in that channel.
Issue tracking (comments) were the next used communication chan-
nel with 9.66% of all design discussions across all channels being
conducted there and 7.44% of Issue Tracker discussions being about
design. Pull requests were the least used medium—a scant 0.84% of
design related discussions being through pull request comments;
and 5.69% of all pull request comments being about design.

Table 4: Channel wise design discussions.

Communication
Channel

Design
Discussions

% of total
Design
Discussions

Dev-mailing list 138, 891 89.51%
Issue tracking system 14, 986 9.66%
Pull requests 1298 0.84%

Survey Triangulation: Our survey responses (from 130 develop-
ers) confirm these findings, which indicates that project mailing
list and issue tracking system were the top two communication
channels for discussing design. Project mailing list was considered
the preferred channel by 57.69% of the respondents, whereas issue
tracking system was the preferred choice for 54.62% respondents
(see Figure 1).

Figure 1: Communication channels used by survey respon-
dents

�
�

�

Observation 1: Design discussions in our selected projects
appear across all channels but project mailing list is the top
choice among developers to discuss design.

We also ask our participants to rate the difficulty of retrieving
design discussion from the three communication channels. To that
end, we presented the communication channels and asked the de-
velopers to rate them (See Section 3.6.5 for details). Dev-mailing
lists ranked the most difficult and issue tracking system ranked
the least difficult according to the Scott-Knott ESD test in terms of
means of Likert scores for all the respondents.�

�
	Observation 2: Mailing list is the most difficult channel in

terms of retrieving design discussions.

Respondents from the survey mentioned that they often also use
unofficial channels like personal emails, verbal meetings, etc. for
design related discussion. In fact, 76.21% respondents mentioned
using “verbal meeting”. This is troubling since these conversations
are not archived and inaccessible to others or for later review. An-
other 23.79% mentioned “personal email” as a medium for design
discussions in the project. While this leaves some trace, it is still
not recorded in the project archives or available to the community—
reducing transparency of decision making in the project.

548

On the Relationship between Design Discussions and DesignQuality ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA�

�
	Observation 3: Design discussions occur via both docu-

mented and undocumented channels.

RQ 1.2: Who are involved in design discussions in the projects?
We answer this question by categorizing the developers into core
and non-core developers according to their amounts of code contri-
bution to the project (See section 3.3 for details). It is important to
investigate this question because, if design discussions in a project
are controlled by a small, core group of contributors, it can leave out
a large group of non-core contributors. In such a situation, non-core
members may be unaware of design decisions and implications of
these decisions on their proposed changes, making these changes
suboptimal or incompatible with the rest of the project.

In our dataset, a majority of the design discussions were from
the core group (67.48%); The non-core group was responsible for
28.54% design discussions. At first glance, it seems that non-core
groups are in the minority and unable to participate, but recall that
by definition non-core groups have fewer overall (code) contribu-
tions, which also translates to fewer instances of participation in
discussions. Therefore, we normalize the design discussion of each
group with the total participation in discussions using the equation
below.

Rescaled value = Total design discussions by the group
Total discussions done by the group (2)

This normalization shows that the mean of design discussions
by core developers is 0.12, whereas the mean design discussions of
the non-core developers is 0.06. These numbers indicate that after
accounting for the amounts of contributions, core members were
more involved in the design discussions of the project. While the
difference between the groups is not statistically significant (Welch
Two Sample t-test, p > 0.05), the effect size is small (0.30, Cohen’s
d [23]).

Survey Triangulation: In our survey, we asked respondents, “Who
are more involved in design related decisions?” after defining core
and non-core groups. 46% of the respondents answered that both
groups were involved in design related discussions in their projects
(See Figure 2.a); confirming our results showing that both groups
are active in design discussions.�
�

�

Observation 4: Both core and non-core developers participate
in design discussions, with some difference in the amount of
contributions between the two groups.

RQ 1.3:Who implements changes resulting from design discussions?
Given that both core and non-core developers participate in design
discussions, the next question is whether there are any differences
in who makes changes resulting from these design discussions.
It is possible that, non-core developers participate in discussions,
but core developers–who typically have longer tenure and have a
broader view of the project—serve as gatekeepers to design related
changes.

To investigate this, we first identified the assignee of each is-
sue in the issue tracking systems (JIRA and Bugzilla). In our data
set, 14, 986 issues were related to design discussions. Of these
7, 310(48.77%) were assigned to core developers and 4, 696(31.33%)

Figure 2: Percentage of survey responders describing partic-
ipation of core and non core developers in a) design discus-
sion, b) implementing design discussion

to non-core developers. We did not find any assignee for 2,980
(19.88%) issues.

In the next step, we linked the assigned issues to the commits in
GitHub, so as to discount those issues that did not result in changes
to the project (and remain uncommitted to the version history). Out
of 12, 006 issues (combined issues of core and non-core) we could
link 11, 228 (93.52%) issues. Of these 11, 228 linked issues, 7, 530
(67.06%) were authored by core developers and 3, 698 (32.93%) by
non-core developers. We were unable to link 778 (6.48%) issues due
to the missing link problem [15, 64].

To understand whether core developers were more involved
in implementing design related changes, we compared the mean
number of design-related changes by core developers with that
of non-core developers. The results show that the two groups are
significantly different (Welch Two Sample t-test, p < 0.05), with a
medium effect size (Cohen’s d [23] of 0.77).

Survey Triangulation: Among the 130 survey respondents, 90%
reported that design discussions were implemented mostly by core
developers (See Figure 2.b) which triangulates our findings.�
�

�

Observation 5: Core developers are responsible for imple-
menting a majority of design discussions despite core and
non-core developers participate equally in design discussions.

RQ 1.4: How do design discussions evolve?
When a project matures, it is possible that it needs fewer design
discussions as the design is already stable by then. However, on the
other hand, as the project grows, adding new features may require
more detailed discussions so as to ensure that different features are
compatible. Additionally, in the case of OSS projects, as the project
matures and gains visibility, more contributors join the project
bringing with them “fresh” design ideas or needing to understand
the core design decisions, which can affect how design discussions
occur in these projects.

We tracked the design discussion evolution of each project over a
period of 560 weeks. First we analyze the overall design discussion
trend across all 37 projects, we found that in most projects, design
discussions follow a decreasing trend, and discussions start to drop
after approximately 250 weeks (Figure 3). When comparing across
projects, three unique trends emerged. Figure 4 presents examples

549

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Umme Ayda Mannan, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma

of these trends using specific projects from our dataset. Table 5
shows the percentage of projects in each design discussion trend
category. The first trend, Decreasing discussions, includes projects
where design discussions decrease as the project matures, manifests
in “Maven” project. The second trend, Constant discussions shows
the amount of design discussions stay stable over time, despite
several peaks; “Log4j” is an exemplar of this trend. Increasing dis-
cussions trend includes projects where design discussions increase
as seen in the project “ant”.

Figure 3: Week-wise average design discussions across all
projects.

Table 5: Number of projects in each design discussion trend
category

General Trend Number of projects(%)
Decreasing 21 (56.76%)
Constant 11 (29.73)%
Increasing 5 (13.51)%

�

�
	Observation 6: Distinct patterns of design discussion trends

exists but on an average design discussions decrease over time.

4.2 Association between Design Discussions
and Design Quality (RQ 2)

Projects that discuss their design are likely to have fewer design
quality issues. However, only discussing about it will not have
any positive impact on the design quality of the project. Hence
investigating the relationship between design discussions and de-
sign quality can help to inform the role of design discussions in
improving (or maintaining) design quality.

We start by looking into the general trend of average code smell
count across all projects. Figure 5 shows the increasing trend of the

average number of code smells across all projects. This is similar to
the findings of Ahmed et. al [13].

Figure 5: Average code smell count per week across all
projects.

Since design discussions per week and code smell count per
week both are time series data, a time series analysis is required to
identify the correlation between these two, which is called cross-
correlation. We do time series analysis individually for each project.
Time series analysis requires a preprocessing step before doing
the actual correlation analysis [50]. Due to space limitations, we
report the results after each preprocessing step in the companion
website[77].

Next, we calculate the cross-correlation between these two time
series (design discussions per week and code smell count per week).
Figure 6 shows the result of this step for qpid project as an example.
From the figure we see that the highest correlation value is 0.16
(shown by the circled vertical line) at lag of 20. Next, we calculate
the significance of correlation for each project. A correlation is
significant when the absolute value is greater than, 2√

n−|k |
, where

n is the number of observations and k is the lag [4].
We found that 20 out of the 37 projects (54.05%) have statisti-

cally significant cross-correlation between design discussions and
code smells count. However, the cross-correlation values are small
(Maximum cross-correlation is 0.34 and the minimum one is 0.003).
We also looked into the lags between two time series and found
that the length of the lag varies from 1 to 22 weeks between two
time series. But in most projects the lag between two time series is
13 weeks. Due to space limitations, we report the plots for each of
the 37 projects in the companion website [77].�

�
	Observation 7: Design discussions and design degradation

are weakly correlated.

As design issues are always increasing and design related discus-
sions are not helping project’s design quality, we wanted to check if
any specific group of developers are responsible for adding design

550

On the Relationship between Design Discussions and DesignQuality ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 4: Week wise project’s design discussion trend.

Figure 6: Cross correlation values of two time series

issues in the projects. First we collect the total number of commits
for each developer that has added or removed at least one code
smell. We normalized the number of commits (that add or remove
code smell) for each developers using the following equation.

Rescaled value = Total number of smell related commits
Total number of commits (3)

We found that, 66.35% of the commits by core developers and
33.65% commits by non-core developers added at least one code
smell in the code base. However we can see from figure 7 that core

developers remove more code smells than they add, whereas the
opposite is true for non-core developers.

Figure 7: Adding, removing code smells versus design discus-
sion participation.

�

�
	Observation 8: Core developers are adding and removing

more design issues in code base than non-core developers.

We also investigate if there is any difference between adding and
removing code smells for each group. We found that there is no
statistically significant difference in terms of number of code smell
adding and removing for the core developers (Welch Two Sample
t-test, p > 0.05). We found similar result for non-core group (Welch
Two Sample t-test, p > 0.05).

551

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Umme Ayda Mannan, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma

5 DISCUSSION
In this section, we discuss the results presented in the previous sec-
tion and present practical implications of our study for researchers,
and tool builders.

The development culture in Apache projects is not very different
than that of other OSS projects. If anything, it’s more systematic.
For example, while merging a change, Apache developers have to
provide a reference to the issue related to the submitted change as a
part of the commit message. This helps to preserve an activity trail
between the issue and the commit [31]. This is not a common prac-
tice in most of the OSS projects. Since such well managed projects
struggle to find design related discussions in their communication
channels, it is high likely that other OSS projects struggle even
more.

Through mining we found that despite the presence of multiple
channels the vast majority of design discussions occur over email
(Table 4). However, our survey results show that both project mail-
ing lists and issue tracking systems are the preferred channel for
developers to discuss design related issues (Figure 1). One reason
behind this could be that mailing lists allow developers to have
lengthier discussions. Developers may therefore initiate discussions
in the mailing list. Only after deciding on a design issues, they move
to issue tracking system to work on those changes.

Using mailing lists for design discussions has drawbacks. Finding
a specific design discussion from email archive can be extremely
difficult as one of the survey respondents explained “existing docu-
mentation is about usage and rarely about design, design decisions
are lost in mail. It’s very hard and time consuming to find a email
thread”.

The other problem related to using mailing lists for design dis-
cussion comes from the fact that emails eventually need to translate
into an issue in the Issue Tracking System. There may not be a one-
to-one mapping between an email discussion and a corresponding
issue. This can lead to fragmented discussions, lost information
etc. Making it difficult to retrieve design discussions and decisions
from the archive. In our survey, 56.92% of respondents confirmed
that retrieving design information from email archives is a difficult
and time consuming task. Our study takes the first step towards
showing that it is possible to automatically identify (and retrieve)
design related discussions from multiple discussion archives (all
three communication channels). Further research to develop effi-
cient automated techniques to locate design discussions would be
beneficial for end users.

A manual inspection of discussion contents across the three
communication channels showed that a majority of design related
discussions started on the mailing list and then shifted to the issue
tracking system. Therefore, in order to understand the rationale of
why a design change is made, developers need to be able to link
discussion threads across multiple channels. Currently there are no
tools to support such discussion tracking. For example, tools could
allow context sensitive search on archives and help identify design
discussions related to a specific piece of code. Similarly, another
useful feature could be the ability to tag design related discussions
and link them to the pull requests or to the part of code where the
relevant implementation exists.

Identifying design discussions could also help in automated re-
view assignment. Current recommender systems for task assign-
ment or code reviews use developers’ expertise [72, 78] to identify
the best match. Identifying individuals who have been involved
in design discussions and therefore have a bigger picture of the
intention of changes can prove beneficial for such recommender
systems. Further research can help in the design of approaches for
automatically selecting contributors involved in a specific design
discussion and assigning them higher priority.

Apart from the issue of design discussions being fragmented
acrossmultiple channels, some of the discussions also occur through
personal emails, verbal meetings, etc. These unofficial discussions
are not recorded in the project archives and are not accessible
to developers who were not part of these discussions. We posit
that this may be one of the reasons why we don’t see a strong
association between design quality and design discussions in our
analysis. Discussion in unofficial channels can also make it difficult
for developers to gauge the impact of their contribution on design.
Further research is required to answer many of the questions raised
by these observations: what types of discussions occur over the
unofficial channels, who participate in these discussions, and what
is the impact of such discussions on tracking design decisions and
the overall quality of the project.

We also investigated who are mostly engaged in design discus-
sions and design implementation. From both mining and survey we
found that though both core and non-core developers are partici-
pating in design discussions and core developers are more involved
implementing design discussions than non-core developers. Some
reasons (as alluded to by the survey respondents) about why this
might be occurring are: it is hard to find discussions across multi-
ple channels, lack of knowledge of where to look for information,
project culture where non-core developers do not work on design re-
lated changes, and design related changes when raised by non-core
members are overlooked by the core group. Some of these can be
fixed by better tooling, others need changes to the project culture.
Researchers need to investigate these reasons and devise moni-
toring mechanisms to recommend necessary measures to project
leaders when needed.

Finally, 79.23% of our survey respondents said that they do not
continuously monitor the design quality of a project and even worse
they do not check the impact of their contribution on design qual-
ity. One reason for this might be the lack of tool support. Current
code smell detection tools do not support just-in-time analysis
for the most recent changes. These tools analyze the whole code
base, which make it difficult to incorporate them into the regu-
lar development workflow. Moreover, the tools mentioned by the
respondents–SpotBugs, JaCoCo, Simian, Checkstyle, SonarQube
etc.– provide information regarding design quality (number of code
smells). However, to the best of our knowledge none of these tools
provide insight or links to relevant design discussions and how
the actual design deviates from those. They also do not provide
refactoring options to developers. This might be one of the reasons
why we see such accumulations of code smells. Developers do not
act upon these warnings unless they have either (i) a high return
on investment (e.g., eliminating the smell has an immediate value),
or (ii) tools make it easy to eliminate the smells. While developers
might not see the immediate benefit of eliminating code smells (as

552

On the Relationship between Design Discussions and DesignQuality ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

smells usually have long-term effects on code maintenance), we
encourage tool builders to close the gap between detection and
correction of code smells.

6 THREATS TO VALIDITY
We have taken care to ensure that our results are unbiased, and
have tried to eliminate the effects of random noise, however some
biases are unavoidable and in some cases it is possible that our
mitigation strategies may not have been effective.

The data set used for the study contained 1, 661, 922 discussions
from 37 Apache projects. We analyzed discussions from the official
communication channel archives. However, developers also use
personal emails, chats, offline discussion, etc. for design related
discussions which are not available on these archives and are not
part of our analysis. As our goal was perform a case study of a sin-
gle ecosystem where projects have similar development processes,
we selected projects from the Apache Software Foundation and
hence our findings may not generalize to all open source projects.
Similarly, we surveyed developers only from he Apache Software
Foundation. The characteristics of these developers may not be
representative of all developers in other open source projects.

We categorized the developers into core and non-core groups
using a threshold of number of commits in the code base for each
developer. Some of the developers could have been categorized as
non-core according to our criteria though they were actually core
developers who focus on large contributions rather than frequent
contributions, or simply focus on architecture and high-level design
(high value contributions).

For code smell detection , we used inFusion [2], which is a static
source code analysis tool. Code smells that are intrinsically histori-
cal, such as Parallel Inheritance, are difficult to detect by just using
static source code analysis [58]. So, the number of occurrences
of such “intrinsically historical” smells will be different when his-
torical information based smell detection technique is used. Also,
InFusion detects 22 code smells, which is not a exhaustive list of
code smell. There could be more smells which InFusion cannot
detect.

It is always possible that the participants misunderstand the
survey questions. To mitigate this threat, we conducted a pilot
study with experts in OSS and survey design. We updated the
survey based on the findings of these pilot studies.

7 CONCLUSIONS
In this paper, we present the results of our investigation of design
discussions, their evolution, and their association with the project’s
design quality. Our mixed method empirical study of 37 Apache
projects and survey of 130 developers revealed that design dis-
cussions are fragmented across multiple communication channels.
This fragmentation of design discussions likely makes it difficult for
developers to keep track of the agreed upon design decisions. Ac-
cording to the respondents, though mailing list is the most difficult
channel (56.92% of respondents) when it comes to retrieving design
discussions, it is the most frequently used channel for design dis-
cussions in the Apache projects. Interestingly, survey respondents
mentioned that other side channels such as personal emails (28.46%
respondents) and verbal meeting (43.85% respondents) were also

used to conduct design discussions. Further, the average number of
design discussions decrease, but code smells increase, as the project
evolves. These factors could be playing a role in the low association
of design discussions with design quality.

Our work, showcases that further research is needed to: a) under-
stand the state, evolution, and impact of design discussions that are
fragmented across multiple communication channels–ours is just
a start, b) analyze the disconnect between the design discussions
and design quality in OSS projects, and c) build tool support to help
developers find and link different design discussions.

8 ACKNOWLEDGMENTS
This work was supported in part by awards 2008089 and 1815486
from the National Science Foundation.

REFERENCES
[1] 2009. iPlasma. http://loose.upt.ro/iplasma/. Accessed: 2019-08-17.
[2] 2017. InFusion. http://www.intooitus.com/inFusion.html. Accessed: 2014-01-01.
[3] 2019. Decision Trees. https://scikit-learn.org/stable/modules/tree.html. Accessed:

2019-08-17.
[4] 2019. Interpret all statistics and graphs for Cross Correlation.

https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-
statistics/time-series/how-to/cross-correlation/interpret-the-results/all-
statistics-and-graphs/. Accessed: 2019-08-13.

[5] 2019. Logistic Regression. https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.LogisticRegression.html. Accessed: 2019-08-17.

[6] 2019. Multinomial Naive Bayes classifier. https://scikit-learn.org/stable/modules/
naive_bayes.html. Accessed: 2019-08-17.

[7] 2019. Natural Language Toolkit. https://www.nltk.org/
[8] 2019. NLTK stop words. https://pythonspot.com/nltk-stop-words/. Accessed:

2019-08-17.
[9] 2019. qualtrics. https://www.qualtrics.com/. Accessed: 2019-08-17.
[10] 2019. Support Vector Machine. https://scikit-learn.org/stable/modules/generated/

sklearn.svm.SVC.html. Accessed: 2019-08-17.
[11] 2019. TfidfVectorizer. https://scikit-learn.org/stable/modules/generated/sklearn.

feature_extraction.text.TfidfVectorizer.html. Accessed: 2020-08-17.
[12] Iftekhar Ahmed, Caius Brindescu, Umme Ayda Mannan, Carlos Jensen, and Anita

Sarma. 2017. An Empirical Examination of the Relationship between Code Smells
and Merge Conflicts. In Empirical Software Engineering and Measurement (ESEM),
2017 ACM/IEEE International Symposium on. IEEE, 58–67.

[13] Iftekhar Ahmed, Umme Ayda Mannan, Rahul Gopinath, and Carlos Jensen. 2015.
An empirical study of design degradation: How software projects get worse over
time. In Empirical Software Engineering and Measurement (ESEM), 2015 ACM/IEEE
International Symposium on. IEEE, 1–10.

[14] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Et-
tore Merlo. 2002. Recovering traceability links between code and documentation.
IEEE transactions on software engineering 28, 10 (2002), 970–983.

[15] Adrian Bachmann and Abraham Bernstein. 2009. Software process data quality
and characteristics: a historical view on open and closed source projects. In
Proceedings of the joint international and annual ERCIM workshops on Principles
of software evolution (IWPSE) and software evolution (Evol) workshops. ACM,
119–128.

[16] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[17] Abraham Bernstein, Jayalath Ekanayake, and Martin Pinzger. 2007. Improving
defect prediction using temporal features and non linear models. In Ninth inter-
national workshop on Principles of software evolution: in conjunction with the 6th
ESEC/FSE joint meeting. ACM, 11–18.

[18] Grady Booch. 2006. Object oriented analysis & design with application. Pearson
Education India.

[19] João Brunet, Gail C Murphy, Ricardo Terra, Jorge Figueiredo, and Dalton Serey.
2014. Do developers discuss design?. In Proceedings of the 11thWorking Conference
on Mining Software Repositories. ACM, 340–343.

[20] Eugenio Capra, Chiara Francalanci, and Francesco Merlo. 2008. An empirical
study on the relationship between software design quality, development effort and
governance in open source projects. IEEE Transactions on Software Engineering
34, 6 (2008), 765–782.

[21] Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J. Ko. 2007. Let’s
Go to the Whiteboard: How and Why Software Developers Use Drawings. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’07). ACM, 557–566.

553

http://loose.upt.ro/iplasma/
http://www.intooitus.com/inFusion.html
https://scikit-learn.org/stable/modules/tree.html
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/time-series/how-to/cross-correlation/interpret-the-results/all-statistics-and-graphs/
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/time-series/how-to/cross-correlation/interpret-the-results/all-statistics-and-graphs/
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/time-series/how-to/cross-correlation/interpret-the-results/all-statistics-and-graphs/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://www.nltk.org/
https://pythonspot.com/nltk-stop-words/
https://www.qualtrics.com/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Umme Ayda Mannan, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma

[22] Elliot J. Chikofsky and James H Cross. 1990. Reverse engineering and design
recovery: A taxonomy. IEEE software 7, 1 (1990), 13–17.

[23] Jacob Cohen, Patricia Cohen, Stephen G West, and Leona S Aiken. 2013. Applied
multiple regression/correlation analysis for the behavioral sciences. Routledge.

[24] Ignatios Deligiannis, Martin Shepperd, Manos Roumeliotis, and Ioannis Stamelos.
2003. An empirical investigation of an object-oriented design heuristic for
maintainability. Journal of Systems and Software 65, 2 (2003), 127–139.

[25] Andre Eposhi, Willian Oizumi, Alessandro Garcia, Leonardo Sousa, Roberto
Oliveira, and Anderson Oliveira. 2019. Removal of design problems through
refactorings: are we looking at the right symptoms?. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE, 148–153.

[26] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters
27, 8 (2006), 861–874.

[27] Vincenzo Ferme, Alessandro Marino, and F Arcelli Fontana. 2013. Is it a Real
Code Smell to be Removed or not?. In International Workshop on Refactoring &
Testing (RefTest), co-located event with XP 2013 Conference.

[28] Francesca Arcelli Fontana, Elia Mariani, Andrea Mornioli, Raul Sormani, and
Alberto Tonello. 2011. An experience report on using code smells detection tools.
In Software Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. IEEE, 450–457.

[29] Francesca Arcelli Fontana and Marco Zanoni. 2011. On investigating code smells
correlations. In Software Testing, Verification and Validation Workshops (ICSTW),
2011 IEEE Fourth International Conference on. IEEE, 474–475.

[30] Apache Software Foundation. 2019. Apache Developers’ Contributors’ Overview.
http://apache.org/dev/. Accessed: 2019-08-17.

[31] Apache Software Foundation. 2019. How Should I Apply Patches From A Contrib-
utor. http://www.apache.org/dev/committers.html#applying-patches. Accessed:
2019-08-17.

[32] Martin Fowler and Kent Beck. 1999. Refactoring: improving the design of existing
code. Addison-Wesley Professional.

[33] Peter Freeman and David Hart. 2004. A science of design for software-intensive
systems. Commun. ACM 47, 8 (2004), 19–21.

[34] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. 2014. Some code smells have a
significant but small effect on faults. ACM Transactions on Software Engineering
and Methodology (TOSEM) 23, 4 (2014), 33.

[35] Mario Hozano, Henrique Ferreira, Italo Silva, Baldoino Fonseca, and Evandro
Costa. 2015. Using developers’ feedback to improve code smell detection. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing. ACM,
1661–1663.

[36] C. Izurieta and J. M. Bieman. 2007. How Software Designs Decay: A Pilot Study
of Pattern Evolution. In First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007). 449–451.

[37] C. Izurieta and J. M. Bieman. 2008. Testing Consequences of Grime Buildup in
Object Oriented Design Patterns. In 2008 1st International Conference on Software
Testing, Verification, and Validation. 171–179.

[38] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An
introduction to statistical learning. Vol. 112. Springer.

[39] Mark Kasunic. 2005. Designing an effective survey. Technical Report. Carnegie-
Mellon Univ Pittsburgh PA Software Engineering Inst.

[40] Michael Keeling and Runde Joe. 2017. Architecture Decision Records in Action.
[41] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano

Antoniol. 2012. An exploratory study of the impact of antipatterns on class
change-and fault-proneness. Empirical Software Engineering 17, 3 (2012), 243–
275.

[42] Max Kuhn and Kjell Johnson. 2013. Applied predictive modeling. Vol. 26. Springer.
[43] J Richard Landis and Gary G Koch. 1977. An application of hierarchical kappa-

type statistics in the assessment of majority agreement among multiple observers.
Biometrics (1977), 363–374.

[44] Wei Li and Raed Shatnawi. 2007. An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution. Journal of
systems and software 80, 7 (2007), 1120–1128.

[45] Alvi Mahadi, Karan Tongay, and Neil A Ernst. 2019. Cross-Dataset Design
Discussion Mining. (2019).

[46] Umme Ayda Mannan, Iftekhar Ahmed, Rana Abdullah M Almurshed, Danny Dig,
and Carlos Jensen. 2016. Understanding code smells in android applications. In
Proceedings of the International Workshop on Mobile Software Engineering and
Systems. ACM, 225–234.

[47] Radu Marinescu. 2004. Detection strategies: Metrics-based rules for detecting
design flaws. In Software Maintenance, 2004. Proceedings. 20th IEEE International
Conference on. IEEE, 350–359.

[48] S. McIntosh. 2011. Build system maintenance. In 2011 33rd International Confer-
ence on Software Engineering (ICSE). 1167–1169.

[49] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,
Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. 2017. Discipline matters:
Refactoring of preprocessor directives in the# ifdef hell. IEEE Transactions on
Software Engineering 44, 5 (2017), 453–469.

[50] Andrew V Metcalfe and Paul SP Cowpertwait. 2009. Introductory time series with
R. Springer.

[51] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. 2002. Two Case Studies
of Open Source Software Development: Apache and Mozilla. ACM Trans. Softw.
Eng. Methodol. 11, 3 (July 2002), 309–346. https://doi.org/10.1145/567793.567795

[52] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. 2015. Do code review
practices impact design quality? a case study of the qt, vtk, and itk projects.
In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, 171–180.

[53] Hausi AMüller and Karl Klashinsky. 1988. Rigi-A system for programming-in-the-
large. In Proceedings of the 10th international conference on Software engineering.
IEEE Computer Society Press, 80–86.

[54] John Noll, Sarah Beecham, and Dominik Seichter. 2011. A qualitative study of
open source software development: The open EMR project. In 2011 International
Symposium on Empirical Software Engineering and Measurement. IEEE, 30–39.

[55] Steffen Olbrich, Daniela S Cruzes, Victor Basili, and Nico Zazworka. 2009. The
evolution and impact of code smells: A case study of two open source systems.
In Proceedings of the 2009 3rd international symposium on empirical software
engineering and measurement. IEEE Computer Society, 390–400.

[56] Gustavo Ansaldi Oliva, Igor Steinmacher, Igor Wiese, and Marco Aurélio Gerosa.
2013. What can commit metadata tell us about design degradation?. In Proceedings
of the 2013 International Workshop on Principles of Software Evolution. ACM, 18–
27.

[57] Thanis Paiva, Amanda Damasceno, Eduardo Figueiredo, and Cláudio Sant’Anna.
2017. On the evaluation of code smells and detection tools. Journal of Software
Engineering Research and Development 5, 1 (2017), 7.

[58] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea
De Lucia, and Denys Poshyvanyk. 2013. Detecting bad smells in source code
using change history information. In Automated software engineering (ASE), 2013
IEEE/ACM 28th international conference on. IEEE, 268–278.

[59] Luca Pascarella, Davide Spadini, Fabio Palomba, and Alberto Bacchelli. 2020.
On The Effect Of Code Review On Code Smells. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER).

[60] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven
Apel, Krzysztof Czarnecki, and Jesus Padilla. 2018. A study of feature scattering
in the linux kernel. IEEE Transactions on Software Engineering (2018).

[61] Gopi Krishnan Rajbahadur, ShaoweiWang, Yasutaka Kamei, and Ahmed EHassan.
2017. The impact of using regression models to build defect classifiers. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).
IEEE, 135–145.

[62] Paul Ralph and Yair Wand. 2009. A proposal for a formal definition of the design
concept. In Design requirements engineering: A ten-year perspective. Springer,
103–136.

[63] Daniele Romano and Martin Pinzger. 2011. Using source code metrics to pre-
dict change-prone java interfaces. In 2011 27th IEEE International Conference on
Software Maintenance (ICSM). IEEE, 303–312.

[64] Bilyaminu Auwal Romo, Andrea Capiluppi, and Tracy Hall. 2014. Filling the gaps
of development logs and bug issue data. (2014).

[65] scikit learn. 2019. . Accessed: 2019-08-1.
[66] Arman Shahbazian, Youn Kyu Lee, Duc Le, Yuriy Brun, and Nenad Medvidovic.

2018. Recovering architectural design decisions. In 2018 IEEE International Con-
ference on Software Architecture (ICSA). IEEE, 95–9509.

[67] T. J. Smiley. 1958. The Uses of Argument. By S. E. Toulmin, Professor of Phi-
losophy, University of Leeds. [Cambridge: at the University Press. 1958. vii, 261
and (index) 2 pp. 22s. 6d. net.]. The Cambridge Law Journal 16, 2 (1958), 251–252.
https://doi.org/10.1017/S0008197300003937

[68] Adriana Meza Soria and André van der Hoek. 2019. Collecting design knowl-
edge through voice notes. In Proceedings of the 12th International Workshop on
Cooperative and Human Aspects of Software Engineering. IEEE Press, 33–36.

[69] Leonardo Sousa, Anderson Oliveira, Willian Oizumi, Simone Barbosa, Alessandro
Garcia, Jaejoon Lee, Marcos Kalinowski, Rafael de Mello, Baldoino Fonseca,
Roberto Oliveira, et al. 2018. Identifying design problems in the source code: A
grounded theory. In Proceedings of the 40th International Conference on Software
Engineering. 921–931.

[70] Leonardo Sousa, Roberto Oliveira, Alessandro Garcia, Jaejoon Lee, Tayana Conte,
WillianOizumi, Rafael deMello, Adriana Lopes, Natasha Valentim, EdsonOliveira,
et al. 2017. HowDo Software Developers Identify Design Problems? A Qualitative
Analysis. In Proceedings of the 31st Brazilian Symposium on Software Engineering.
54–63.

[71] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2016. An empirical comparison of model validation techniques for
defect prediction models. IEEE Transactions on Software Engineering 43, 1 (2016),
1–18.

[72] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. 2015. Who should
review my code? a file location-based code-reviewer recommendation approach
for modern code review. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, 141–150.

[73] TIOBE. [n.d.]. TIOBE Index. https://www.tiobe.com/tiobe-index/.

554

http://apache.org/dev/
http://www.apache.org/dev/committers.html##applying-patches
https://doi.org/10.1145/567793.567795
https://doi.org/10.1017/S0008197300003937
https://www.tiobe.com/tiobe-index/

On the Relationship between Design Discussions and DesignQuality ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

[74] Jilles Van Gurp and Jan Bosch. 2002. Design erosion: problems and causes. Journal
of systems and software 61, 2 (2002), 105–119.

[75] Giovanni Viviani, Michalis Famelis, Xin Xia, Calahan Janik-Jones, and Gail C
Murphy. 2019. Locating Latent Design Information in Developer Discussions: A
Study on Pull Requests. IEEE Transactions on Software Engineering (2019).

[76] Giovanni Viviani, Calahan Janik-Jones, Michalis Famelis, Xin Xia, and Gail C
Murphy. 2018. What design topics do developers discuss?. In Proceedings of the
26th Conference on Program Comprehension. ACM, 328–331.

[77] Companion website. [n.d.]. Companion website. https://fse2020.wixsite.com/
designdiscussion. Accessed: 2018-05-20.

[78] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2015. Automati-
cally recommending peer reviewers in modern code review. IEEE Transactions
on Software Engineering 42, 6 (2015), 530–543.

[79] Nico Zazworka, Michele A Shaw, Forrest Shull, and Carolyn Seaman. 2011. In-
vestigating the impact of design debt on software quality. In Proceedings of the
2nd Workshop on Managing Technical Debt. ACM, 17–23.

555

https://fse2020.wixsite.com/designdiscussion
https://fse2020.wixsite.com/designdiscussion

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Collection
	3.2 Building the Discussion Classifier
	3.3 Developer Categorization
	3.4 Code Smell Collection
	3.5 Data Analysis
	3.6 Survey

	4 Results
	4.1 Design Discussions in OSS Projects (RQ1)
	4.2 Association between Design Discussions and Design Quality (RQ 2)

	5 Discussion
	6 Threats to Validity
	7 Conclusions
	8 Acknowledgments
	References

